【題目】在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)P(x1,y1),Q(x2,y2)是圖形W上的任意兩點(diǎn). 定義圖形W的測(cè)度面積:若|x1-x2|的最大值為m,|y1-y2|的最大值為n,則S=mn為圖形W的測(cè)度面積. 例如,若圖形W是半徑為l的⊙O. 當(dāng)P,Q分別是⊙O與x軸的交點(diǎn)時(shí),如圖1,|x1-x2|取得最大值,且最大值m=2;當(dāng)P,Q分別是⊙O與y軸的交點(diǎn)時(shí),如圖2,|y1-y2|取得最大值,且最大值n=2. 則圖形W的測(cè)度而積S=mn=4.
(1)若圖形W是拋物線y=-x2+2x+3和直線y=2x-1圍成的封閉圖形,則它的測(cè)度面積S=______
(2)若圖形W是一個(gè)邊長(zhǎng)為1的正方形ABCD.
①當(dāng)A,B兩點(diǎn)均在x軸上時(shí),它的測(cè)度面積S=_________;
②此圖形測(cè)度面積S的最大值為_________;
(3)若圖形W是一個(gè)邊長(zhǎng)分別為3和6的矩形ABCD,求它的測(cè)度面積S的取值范圍.
【答案】(1)36;(2)①1; ②2;(3)測(cè)度面積S的取值范圍是18≤S≤.
【解析】試題分析:(1)先求出拋物線與直線的交點(diǎn)坐標(biāo),再求出拋物線的頂點(diǎn)坐標(biāo),然后根據(jù)定義進(jìn)行計(jì)算即可得;
(2)①根據(jù)給出的定義可以求出來(lái);
②根據(jù)定義可以求出測(cè)度面積的最大值為2;
(3)因?yàn)槠揭茍D形W不會(huì)改變其測(cè)度面積S的大小,將矩形ABCD的其中一個(gè)頂點(diǎn)B平移至x軸上,注意分三種情況討論.
試題解析:(1)解方程組得: , ,
拋物線y=-x2+2x+3=-(x-1)2+4,
根據(jù)定義可知圖形W中|x1-x2|的最大值為4,|y1-y2|的最大值為9,則S=4×9=36,
故答案為:36;
(2)①當(dāng)A、B都在x軸上時(shí),如圖所示,橫坐標(biāo)差的絕對(duì)值的最大值為1,縱坐標(biāo)差的絕對(duì)值的最大值為1,根據(jù)定義可知圖形的測(cè)度面積為1,
故答案為:1;
②如圖所示擺放時(shí),圖形的測(cè)度面積最大,
此時(shí)橫坐標(biāo)差的絕對(duì)值的最大值為,縱坐標(biāo)差的絕對(duì)值的最大值為,根據(jù)定義可知圖形的測(cè)度面積為2,
故答案為2;
(3)不妨設(shè)矩形ABCD的邊AB=6,BC=3. 由已知可得,平移圖形W不會(huì)改變其測(cè)度面積S的大小,將矩形ABCD的其中一個(gè)頂點(diǎn)B平移至x軸上. 當(dāng)頂點(diǎn)A,B或B,C都在x軸上時(shí),如圖1和圖2,矩形ABCD的測(cè)度面積S就是矩形ABCD的面積,此時(shí)S=18.
當(dāng)頂點(diǎn)A,C都不在x軸上時(shí),如圖3.
過(guò)A作直線AE⊥x軸于點(diǎn)E,過(guò)C作直線CF⊥x軸于點(diǎn)F,過(guò)D作直線GH∥x軸,與直線AE,CF分別交于點(diǎn)H和點(diǎn)G,則可得四邊形EFGH是矩形.
當(dāng)點(diǎn)P,Q分別與點(diǎn)A,C重合時(shí),|x1-x2|取得最大值m,且最大值m=EF;
當(dāng)點(diǎn)P,Q分別與點(diǎn)B,D重合時(shí),|y1-y2|取得最大值n,且最大值n=GF.
∴圖形W的測(cè)度面積S=EF·GF.
∵∠ABC=90°,
∴∠ABE+∠CBF=90°.
∵∠AEB=90°,
∴∠ABE+∠BAE=90°.
∴∠BAE=∠CBF.
又∵∠AEB=∠BFC=90°,
∴△ABE∽△BCF.
∴.
設(shè)AE=2a,EB=2b(a>0,b>0),則BF=a,FC=b,
在Rt△ABE中,由勾股定理得AE2+BE2=AB2.
∴4a2+4b2=36. 即a2+b2=9.
∵b>0,∴b=
易證△ABE≌△CDG. ∴CG=AE=2a.
∴EF=EB+BF=2b+a,GF=FC+CG=b+2a.
∴S=EF·GF=(2b+a)(b+2a)=2a2+2b2+5ab=18+5a
=18+5=18+5=18+5
∴當(dāng)a2=,即a=時(shí),測(cè)度面積S取得最大值18+5×=.
∵a>0,b>0,∴ . ∴S>18.
∴當(dāng)頂點(diǎn)A,C都不在x軸上時(shí),S的范圍為l8<S≤.
綜上所述,測(cè)度面積S的取值范圍是18≤S≤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是從一副撲克牌中取出的兩組牌,分別是黑桃1,2,3,4和方塊1,2,3,4,將它們背面朝上分別重新洗牌后,從兩組牌中各摸出一張,那么摸出的兩張牌的牌面數(shù)字之和等于5的概率是多少?請(qǐng)你用列舉法(列表或畫樹(shù)狀圖)加以分析說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下列解題過(guò)程,然后解答問(wèn)題(1)、(2)、(3).
例:解絕對(duì)值方程:.
解:討論:①當(dāng)≥0時(shí),原方程可化為,它的解是.
②當(dāng)<0時(shí),原方程可化為,它的解是.
∴原方程的解為和.
問(wèn)題(1):依例題的解法,方程的解是 ;
問(wèn)題(2):嘗試解絕對(duì)值方程:;
問(wèn)題(3):在理解絕對(duì)值方程解法的基礎(chǔ)上,解方程:
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,△ABC三個(gè)頂點(diǎn)的位置如圖所示,現(xiàn)將△ABC平移,使點(diǎn)A移動(dòng)到點(diǎn)A',點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別是點(diǎn)B'、C'.
(1)△ABC的面積是 ;
(2)畫出平移后的△A'B'C';
(3)若連接AA'、CC′,這兩條線段的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】工廠接到訂單生產(chǎn)如圖所示的巧克力包裝盒子,每個(gè)盒子由3個(gè)長(zhǎng)方形側(cè)面和2個(gè)正三角形底面組成,倉(cāng)庫(kù)有甲、乙兩種規(guī)格的紙板共2600張,其中甲種規(guī)格的紙板剛好可以裁出4個(gè)側(cè)面(如圖①),乙種規(guī)格的紙板可以裁出3個(gè)底面和2個(gè)側(cè)面(如圖②),裁剪后邊角料(圖中陰影部分)不再利用.
(1)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)兩種規(guī)格的紙板各有多少?gòu)垼?/span>
(2)一共能生產(chǎn)多少個(gè)巧克力包裝盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( 。
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】指出下列問(wèn)題中的總體、個(gè)體、樣本:
(1)為了估計(jì)某塊玉米試驗(yàn)田里的單株平均產(chǎn)量,從中抽取株進(jìn)行實(shí)測(cè);
(2)某學(xué)校為了了解學(xué)生完成課外作業(yè)的時(shí)間,從中抽樣調(diào)查了名學(xué)生完成課外作業(yè)的時(shí)間進(jìn)行分析.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,平分,平分,和交于點(diǎn),過(guò)點(diǎn)作交于點(diǎn),交于點(diǎn).若,則的長(zhǎng)為( )
A.6.5B.7.2C.8D.9.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用長(zhǎng)為6m的鋁合金條制成“日”字形窗框,若窗框的寬為xm,窗戶的透光面積為ym2(鋁合金條的寬度不計(jì)).
(1)求出y與x的函數(shù)關(guān)系式;
(2)如何安排窗框的長(zhǎng)和寬,才能使得窗戶的透光面積最大?并求出此時(shí)的最大面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com