【題目】已知:如圖,在梯形ABCD中,AD∥BC,點(diǎn)E、F分別是邊BC、CD的中點(diǎn),直線(xiàn)EF交邊AD的延長(zhǎng)線(xiàn)于點(diǎn)M,交邊AB的延長(zhǎng)線(xiàn)于點(diǎn)N,連接BD.
(1) 求證:四邊形DBEM是平行四邊形;
(2) 連接CM,當(dāng)四邊形ABCM為平行四邊形時(shí),求證:MN=2DB.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】
(1)首先根據(jù)三角形中位線(xiàn)定理可得EF∥BD,再有條件AD∥BC,可根據(jù)兩邊互相平行的四邊形是平行四邊形,可判定四邊形DBEM是平行四邊形;
(2) 首先根據(jù)平行線(xiàn)分線(xiàn)段成比例定理可得 ,再根據(jù)BE=CE,可得BN=CM,進(jìn)而得到AB=BN,再由EF∥BD,可得=,進(jìn)而得到MN=2DB.
證明:(1) ∵點(diǎn)E、F分別是邊BC、CD的中點(diǎn),
∴EF∥BD,
又∵AD∥BC,
∴四邊形DBEM是平行四邊形;
(2) ∵四邊形ABCM為平行四邊形,
∴AB=CM,AB∥CM,
∴,
∵BE=CE,
∴BN=CM,
∴AB=BN,
∵EF∥BD,
∴=.
∴MN=2DB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有四張正面分別標(biāo)有數(shù)字﹣1,0,1,2的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗均勻.
(1)隨機(jī)抽取一張卡片,求抽到數(shù)字“﹣1”的概率;
(2)隨機(jī)抽取一張卡片,然后不放回,再隨機(jī)抽取一張卡片,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出第一次抽到數(shù)字“2”且第二次抽到數(shù)字“0”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(1,4),B(4,n)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫(xiě)出當(dāng)x>0時(shí),kx+b<的解集.
(3)點(diǎn)P是x軸上的一動(dòng)點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸l如圖所示,則下列結(jié)論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結(jié)論是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖①,拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸交于A,B兩點(diǎn),點(diǎn)P在該拋物線(xiàn)上(P點(diǎn)與A、B兩點(diǎn)不重合).如果△ABP的三邊滿(mǎn)足AP2+BP2=AB2,則稱(chēng)點(diǎn)P為拋物線(xiàn)y=ax2+bx+c(a≠0)的勾股點(diǎn).
(1)直接寫(xiě)出拋物線(xiàn)y=-x2+1的勾股點(diǎn)的坐標(biāo).
(2)如圖②,已知拋物線(xiàn)y=ax2+bx(a≠0)與x軸交于A,B兩點(diǎn),點(diǎn)P(1, )是拋物線(xiàn)的勾股點(diǎn),求拋物線(xiàn)的函數(shù)表達(dá)式.
(3)在(2)的條件下,點(diǎn)Q在拋物線(xiàn)上,求滿(mǎn)足條件S△ABQ=S△ABP的Q點(diǎn)(異于點(diǎn)P)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,∠BAD=60°,點(diǎn)E在邊AD上,連接BE,在BE上取點(diǎn)F,連接AF并延長(zhǎng)交BD于H,且∠AFE=60°,過(guò)C作CG∥BD,直線(xiàn)CG、AF交于G.
(1)求證:∠FAE=∠EBA;
(2)求證:AH=BE;
(3)若AE=3,BH=5,求線(xiàn)段FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,把Rt△ABC和Rt△DEF按圖1擺放,(點(diǎn)C與E點(diǎn)重合),點(diǎn)B、C、E、F始終在同一條直線(xiàn)上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10,如圖2,△DEF從圖1出發(fā),以每秒1個(gè)單位的速度沿CB向△ABC勻速運(yùn)動(dòng),同時(shí),點(diǎn)P從A出發(fā),沿AB以每秒1個(gè)單位向點(diǎn)B勻速移動(dòng),AC與△DEF的直角邊相交于Q,當(dāng)P到達(dá)終點(diǎn)B時(shí),△DEF同時(shí)停止運(yùn)動(dòng),連接PQ,設(shè)移動(dòng)的時(shí)間為t(s).解答下列問(wèn)題:
(1)△DEF在平移的過(guò)程中,當(dāng)點(diǎn)D在Rt△ABC的邊AC上時(shí),求t的值;
(2)在移動(dòng)過(guò)程中,是否存在△APQ為等腰三角形?若存在,求出t的值;若不存在,說(shuō)明理由.
(3)在移動(dòng)過(guò)程中,當(dāng)0<t≤5時(shí),連接PE,是否存在△PQE為直角三角形?若存在,求出t的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】釣魚(yú)島是我國(guó)固有領(lǐng)土,為測(cè)量釣魚(yú)島東西兩端A,B的距離,如圖2,我勘測(cè)飛機(jī)在距海平面垂直高度為1公里的點(diǎn)C處,測(cè)得端點(diǎn)A的俯角為45°,然后沿著平行于AB的方向飛行3.2公里到點(diǎn)D,并測(cè)得端點(diǎn)B的俯角為37°,求釣魚(yú)島兩端AB的距離.(結(jié)果精確到0.1公里,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=m.若在P處有一棵樹(shù)與墻CD,AD的距離分別是15m和6m,要將這棵樹(shù)圍在花園內(nèi)(含邊界,不考慮樹(shù)的粗細(xì)),則花園面積S的最大值為( )
A. 193 B. 194 C. 195 D. 196
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com