【題目】拋物線yax2+bx3a0)與直線ykx+ck0)相交于A(﹣1,0)、B2,﹣3)兩點,且拋物線與y軸交于點C

1)求拋物線的解析式;

2)求出C、D兩點的坐標(biāo)

3)在第四象限拋物線上有一點P,若△PCD是以CD為底邊的等腰三角形,求出點P的坐標(biāo).

【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(1+,﹣2).

【解析】

1)把A(﹣1,0)、B2,﹣3)兩點坐標(biāo)代入yax2+bx3可得拋物線解析式.

2)當(dāng)x0時可求C點坐標(biāo),求出直線AB解析式,當(dāng)x0可求D點坐標(biāo).

3)由題意可知P點縱坐標(biāo)為﹣2,代入拋物線解析式可求P點橫坐標(biāo).

解:(1)把A(﹣1,0)、B2,﹣3)兩點坐標(biāo)代入

yax2+bx3可得

解得

yx22x3

2)把x0代入yx22x3中可得y=﹣3C0,﹣3

設(shè)ykx+b,把A(﹣1,0)、B2,﹣3)兩點坐標(biāo)代入

解得

y=﹣x1

D0,﹣1

3)由C0,﹣3),D0,﹣1)可知CD的垂直平分線經(jīng)過(0,﹣2

P點縱坐標(biāo)為﹣2,

x22x3=﹣2

解得:x,∵x0x1+

P1+,﹣2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過原點,與x軸的另一個交點為,將拋物線向右平移個單位得到拋物線x軸于A、B兩點A在點B的左邊,交y軸于點C

求拋物線的解析式.

如圖,當(dāng)時,連接AC,過點A交拋物線于點D,連接CD

求拋物線的解析式.

直接寫出點D的坐標(biāo)為______

若拋物線的對稱軸上存在點P,使為等邊三角形,請直接寫出此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,點P從A出發(fā)沿AB以3cm/s的速度向點B移動,一直到達點B為止;同時,點Q從點C出發(fā)沿以2cm/s的速度向點D移動.經(jīng)過多長時間P、Q兩點的距離是10?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線x軸交于點A、B左側(cè),與y軸交于點C,經(jīng)過點A的射線AFy軸正半軸相交于點E,與拋物線的另一個交點為F,,點D是點C關(guān)于拋物線對稱軸的對稱點,點Py軸上一點,且,則點P的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c經(jīng)過點(﹣1,0),對稱軸為直線l,則下列結(jié)論:abc0a+b+c0;a+c0;a+b0,正確的是( 。

A. ①②④B. ②④C. ①③D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ACEF為正方形,以AC為斜邊作RtABC,∠B=90°,AB=4,BC=2,延長BC至點D,使CD=5,連接DE

1)求正方形的邊長;

2)求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育老師隨機抽取了九年級甲、乙兩班部分學(xué)生進行一分鐘跳繩的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:

分組

頻數(shù)

頻率

第一組(0x<120)

3

0.15

第二組(120x<160)

8

a

第三組(160x<200)

7

0.35

第四組(200x<240)

b

0.1

(1)頻數(shù)分布表中a____,b_____,并將統(tǒng)計圖補充完整;

(2)如果該校九年級共有學(xué)生360人,估計跳繩能夠一分鐘完成160160次以上的學(xué)生有多少人?

(3)已知第一組中有兩個甲班學(xué)生,第四組中只有一個甲班學(xué)生,老師隨機從這兩個組中各選一名學(xué)生談測試體會,則所選兩人正好都是甲班學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F(xiàn)是平行四邊形ABCD對角線AC上兩點,AE=CF=AC.連接DE,DF并延長,分別交AB,BC于點G,H,連接GH,則的值為(  )

A. B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物線yax2+bx+c的對稱軸為直線x1,且過點(3,0),下列結(jié)論:abc0ab+c0;③2a+b0b24ac0;正確的有( 。﹤.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案