【題目】拋物線y=x2﹣4x+3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)C是此拋物線的頂點(diǎn).
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)點(diǎn)C在反比例函數(shù)(k≠0)的圖象上,求反比例函數(shù)的解析式.

【答案】
(1)

【解答】解:令y=0,得到x2﹣4x+3=0,即(x﹣1)(x﹣3)=0,

解得:x=1或3,

則A(1,0),B(3,0),

∵y=x2﹣4x+3=(x﹣2)2﹣1,

∴頂點(diǎn)C的坐標(biāo)為(2,﹣1);


(2)

∵點(diǎn)C(2,﹣1)在反比例函數(shù)(k≠0)的圖象上,

∴k=﹣1×2=﹣2,

∴反比例函數(shù)的解析式為;


【解析】(1)令拋物線解析式中y=0得到關(guān)于x的方程,求出方程的解得到x的值,確定出A與B坐標(biāo)即可;配方后求出C坐標(biāo)即可;
(2)將求得的點(diǎn)C的坐標(biāo)代入反比例函數(shù)的解析式即可求得k值.
【考點(diǎn)精析】本題主要考查了拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí)點(diǎn),需要掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,點(diǎn)E、F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF的長為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對(duì)角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有( 。

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)圓錐,下列平面圖形既不是它的三視圖,也不是它的側(cè)面展開圖的是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】梧州市特產(chǎn)批發(fā)市場有龜苓膏粉批發(fā),其中A品牌的批發(fā)價(jià)是每包20元,B品牌的批發(fā)價(jià)是每包25元,小王需購買A、B兩種品牌的龜苓膏共1000包.
(1)若小王按需購買A、B兩種品牌龜苓膏粉共用22000元,則各購買多少包?
(2)憑會(huì)員卡在此批發(fā)市場購買商品可以獲得8折優(yōu)惠,會(huì)員卡費(fèi)用為500元.若小王購買會(huì)員卡并用此卡按需購買1000包龜苓膏粉,共用了y元,設(shè)A品牌買了x包,請(qǐng)求出y與x之間的函數(shù)關(guān)系式.
(3)在2中,小王共用了20000元,他計(jì)劃在網(wǎng)店包郵銷售這批龜苓膏粉,每包龜苓膏粉小王需支付郵費(fèi)8元,若每包銷售價(jià)格A品牌比B品牌少5元,請(qǐng)你幫他計(jì)算,A品牌的龜苓膏粉每包定價(jià)不低于多少元時(shí)才不虧本(運(yùn)算結(jié)果取整數(shù))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=12cm,BC=6cm,∠ABC=30°,把△ABC以點(diǎn)B為中心按逆時(shí)針方向旋轉(zhuǎn),使點(diǎn)C旋轉(zhuǎn)到AB邊的延長線上的C′處,那么AC邊掃過的圖形(圖中陰影部分)的面積是( )cm2 . (結(jié)果保留π)

A.15π
B.60π
C.45π
D.75π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時(shí)出發(fā),設(shè)客車離甲地的距離為y1千米,出租車離甲地的距離為y2千米,兩車行駛的時(shí)間為x小時(shí),y1、y2關(guān)于x的函數(shù)圖象如圖所示:

(1)根據(jù)圖象,直接寫出y1、y2關(guān)于x的函數(shù)圖象關(guān)系式;
(2)若兩車之間的距離為S千米,請(qǐng)寫出S關(guān)于x的函數(shù)關(guān)系式;
(3)甲、乙兩地間有A,B兩個(gè)加油站,相距200千米,若客車進(jìn)入A加油站時(shí),出租車恰好進(jìn)入B加油站,求A加油站離甲地的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)將拋物線沿y軸平移t(t>0)個(gè)單位,當(dāng)平移后的拋物線與線段OB有且只有一個(gè)交點(diǎn)時(shí),則t的取值范圍是
(2)拋物線上存在點(diǎn)P,使∠BCP=∠BAC﹣∠ACO,則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論: ①拋物線過原點(diǎn);
②4a+b+c=0;
③a﹣b+c<0;
④拋物線的頂點(diǎn)坐標(biāo)為(2,b);
⑤當(dāng)x<2時(shí),y隨x增大而增大.
其中結(jié)論正確的是(

A.①②③
B.③④⑤
C.①②④
D.①④⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案