【題目】如圖,分別過第二象限內(nèi)的點軸的平行線,與軸分別交于點與雙曲線分別交于點

下面四個結(jié)論:

存在無數(shù)個點使;

存在無數(shù)個點使;

至少存在一個點使

至少存在一個點使

所有正確結(jié)論的序號是________

【答案】①②

【解析】

如圖,設(shè)Cm,),Dn),則Pn),利用反比例函數(shù)k的幾何意義得到SAOC3SBOD3,則可對進行判斷;根據(jù)三角形面積公式可對進行判斷;通過計算S四邊形OAPBSACD得到mn的關(guān)系可對對進行判斷.

解:如圖,設(shè)Cm,),Dn,),則Pn),

SAOC,SBOD

SAOCSBOD;所以正確;

SPOA,SPOB,

SPOASPOB;所以正確;

SPCD,

∴當(dāng)時,即3m2+4mn+3n20,

∵△=42-4×3×3=-200,

∴不存在點使;所以錯誤;

S四邊形OAPB=﹣n×SACD

∴當(dāng)時,即m2mn2n20

m2n(舍去)或m=﹣n,此時P點為無數(shù)個,所以④正確.

故答案為:①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將線段 AB 先向右平移 5 個單位,再將所得線段繞原點按順時針方向旋轉(zhuǎn) 90°,得到線段 AB ,則點 B 的對應(yīng)點 B′的坐標(biāo)是(

A.-4 , 1B. 1, 2C.4 ,- 1D.1 ,- 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,D為邊AC的延長線上一點(),平移線段BC,使點C移動到點D,得到線段EDMED的中點,過點MED的垂線,交BC于點F,交AC于點G

1)依題意補全圖形;

2)求證:;

3)連接DF并延長交AB于點H,用等式表示線段AHCG的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知二次函數(shù)(為常數(shù),)的圖象過點和點,函數(shù)圖象最低點的縱坐標(biāo)為.直線的解析式為

求二次函數(shù)的解析式;

直線沿軸向右平移,得直線,與線段相交于點,與軸下方的拋物線相交于點,過點軸于點,把沿直線折疊,當(dāng)點恰好落在拋物線上點(求直線的解析式;

的條件下,軸交于點,把繞點逆時針旋轉(zhuǎn)得到,P上的動點,當(dāng)為等腰三角形時,求符合條件的點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,以等邊ABC的邊BC為直徑作⊙O,分別交AB,AC于點D,E,過點DDFACAC于點F.

(1)求證:DF是⊙O的切線;

2)若等邊ABC的邊長為8,求由、DF、EF圍成的陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點上,點上一動點,且與點分別位于直徑的兩側(cè),,過點的延長線于點

1)當(dāng)點運動到什么位置時,恰好是的切線?畫出圖形并加以說明.

2)若點與點關(guān)于直徑對稱,且,畫出圖形求此時的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將如圖所示的牌面數(shù)字分別是1,2,3,4的四張撲克牌背面朝上,洗勻后放在桌面上.

1)從中隨機抽出一張牌,牌面數(shù)字是偶數(shù)的概率是__________;

2)先從中隨機抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字(不放回),再隨機抽取一張,將牌面數(shù)字作為個位上的數(shù)字,請用畫樹狀圖或列表的方法求組成的兩位數(shù)恰好是3的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以RtABC的斜邊BC為一邊在ABC的同側(cè)作正方形BCEF,設(shè)正方形的中心為O,連接AO,如果AB=4,AO=6,那么AC=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件8元,出廠價為每件10元,每月銷售量y(件)與銷售單價x(元)之間的關(guān)系近似滿足一次函數(shù):y=-10x+500

1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為20元,那么政府這個月為他承擔(dān)的總差價為多少元?

2)設(shè)李明獲得的利潤為w(元),當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?

3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于3410元,那么政府為他承擔(dān)的總差價最少為多少元?

查看答案和解析>>

同步練習(xí)冊答案