【題目】如圖,在ABC中,DBC邊上的一點(diǎn),EAD的中點(diǎn),過(guò)A點(diǎn)作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AFBD,連接BF

1)求證:BDCD;

2)當(dāng)ABC滿足什么條件時(shí),四邊形AFBD是矩形?并說(shuō)明理由;

3)在(2)的條件下,如果矩形AFBD是正方形,確定ABC的形狀并說(shuō)明理由.

【答案】1)見(jiàn)解析;(2)當(dāng)ABC滿足:ABAC時(shí),四邊形AFBD是矩形,見(jiàn)解析;(3)當(dāng)矩形AFBD是正方形,ABC是等腰直角三角形,見(jiàn)解析

【解析】

1)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠AFE=∠DCE,然后利用角角邊證明AEFDEC全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AFCD,再利用等量代換即可得證;

2)先利用一組對(duì)邊平行且相等的四邊形是平行四邊形證明四邊形AFBD是平行四邊形,再根據(jù)一個(gè)角是直角的平行四邊形是矩形,可知∠ADB90°,由等腰三角形三線合一的性質(zhì)可知必須是ABAC

3)根據(jù)正方形的性質(zhì)和等腰直角三角形的判定定理即可得到結(jié)論.

1)證明:∵AFBC,

∴∠AFE=∠DCE,

EAD的中點(diǎn),

AEDE,

AEFDEC中,

,

∴△AEF≌△DECAAS),

AFCD,

AFBD,

DBCD

2)當(dāng)ABC滿足:ABAC時(shí),四邊形AFBD是矩形.

理由如下:∵AFBD,AFBD,

∴四邊形AFBD是平行四邊形,

ABAC,BDCD(三線合一),

∴∠ADB90°,

AFBD是矩形.

3)當(dāng)矩形AFBD是正方形,ABC是等腰直角三角形,且∠BAC90°

∵矩形AFBD是正方形,

ADBD,

∵∠ADB90°

ADBC,

ABAC,

ADBDCDBC,

∴∠BAC90°

ABC是等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列事件中,是隨機(jī)事件的是( )
A.任意選擇某一電視頻道,它正在播放新聞聯(lián)播
B.三角形任意兩邊之和大于第三邊
C. 是實(shí)數(shù),
D.在一個(gè)裝著白球和黑球的袋中摸球,摸出紅球

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC 是等腰直角三角形,分別以直角邊 AC,BC 為直徑畫弧,若 AB=2 ,則圖中陰影部分的面積是( )

A.
B.
C.
D. +

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一個(gè)長(zhǎng)為4a,寬為2b的長(zhǎng)方形,沿圖中虛線均勻分成4個(gè)長(zhǎng)方形,然后按圖2形狀拼成一個(gè)正方形.

(1)2的空白部分的邊長(zhǎng)是多少?(用含a,b的式子表示)

(2)觀察圖2,用等式表示出的數(shù)量關(guān)系.

(3)2a+b6,且ab2,求圖2的空白正方形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC與△ABC′在平面直角坐標(biāo)系中的位置如圖.

1)分別寫出下列各點(diǎn)的坐標(biāo): A   ;B   ;C   ;

2)若點(diǎn)Pa,b)是△ABC內(nèi)部一點(diǎn),則平移后△ABC′內(nèi)的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為   ;

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為2000元、1700元的、兩種型號(hào)的空調(diào),如表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售款

種型號(hào)

種型號(hào)

第一周

4臺(tái)

5臺(tái)

20500

第二周

5臺(tái)

10臺(tái)

33500

1)求兩種型號(hào)的空調(diào)的銷售單價(jià);

2)求近兩周的銷售利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)閱讀以下內(nèi)容:

已知實(shí)數(shù)x,y滿足x+y=2,且求k的值.

三位同學(xué)分別提出了以下三種不同的解題思路:

甲同學(xué):先解關(guān)于x,y的方程組,再求k的值.

乙同學(xué):先將方程組中的兩個(gè)方程相加,再求k的值.

丙同學(xué):先解方程組,再求k的值.

(2)你最欣賞(1)中的哪種思路?先根據(jù)你所選的思路解答此題,再對(duì)你選擇的思路進(jìn)行簡(jiǎn)要評(píng)價(jià).

(評(píng)價(jià)參考建議:基于觀察到題目的什么特征設(shè)計(jì)的相應(yīng)思路,如何操作才能實(shí)現(xiàn)這些思路、運(yùn)算的簡(jiǎn)潔性,以及你依此可以總結(jié)什么解題策略等等)

請(qǐng)先在以下相應(yīng)方框內(nèi)打勾,再解答相應(yīng)題目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校學(xué)生會(huì)向全校2900名學(xué)生發(fā)起了“愛(ài)心一日捐”捐款活動(dòng),為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 , 圖①中m的值是;
(Ⅱ)求本次你調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時(shí),一個(gè)月工作25天.月工資底薪800元,另加計(jì)件工資.加工1件A型服裝計(jì)酬16元,加工1件B型服裝計(jì)酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1件A型服裝和2件B型服裝需4小時(shí),加工3件A型服裝和1件B型服裝需7小時(shí).(工人月工資=底薪+計(jì)件工資)
(1)一名熟練工加工1件A型服裝和1件B型服裝各需要多少小時(shí)?
(2)一段時(shí)間后,公司規(guī)定:“每名工人每月必須加工A,B兩種型號(hào)的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半”.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請(qǐng)你運(yùn)用所學(xué)知識(shí)判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?

查看答案和解析>>

同步練習(xí)冊(cè)答案