【題目】如圖,矩形ABCD中,對(duì)角線AC的垂直平分線交AD、BC于點(diǎn)E、F,AC與EF交于點(diǎn)O,連結(jié)AF、CE.
(1)求證:四邊形AFCE是菱形;
(2)若AB=3,AD=4,求菱形AFCE的邊長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2).
【解析】
試題分析:(1)由矩形的性質(zhì)得出AD∥BC,∠EAO=∠FCO,證明△AEO≌△CFO,得出AE=CF,證出四邊形AFCE是平行四邊形,再由對(duì)角線AC⊥EF,即可得出結(jié)論;
(2)設(shè)AF=CF=x,則BF=4-x,在Rt△ABF中,根據(jù)勾股定理得出方程,解方程即可.
試題解析:(1)證明:∵四邊形ABCD是矩形,
∴AD∥BC,AD=BC,
∴∠EAO=∠FCO,
∵EF是AC的垂直平分線,
∴AO=CO,∠EOA=∠FOC=90°,
在△AEO和△CFO中,
,
∴△AEO≌△CFO(ASA),
∴AE=CF,
∴四邊形AFCE是平行四邊形,
又∵AC⊥EF,
∴四邊形AFCE是菱形;
(2)解:∵四邊形AFCE是菱形,
∴AF=CF,
設(shè)AF=CF=x,則BF=4-x,
在Rt△ABF中,AF2=AB2+BF2,
即x2=32+(4-x)2,
解得 x=,
∴菱形AFCE的邊長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC在平面直角坐標(biāo)系中的位置如圖所示(圖中每個(gè)小方格邊長(zhǎng)均為1個(gè)單位長(zhǎng)度).
(1)求△ABC的面積.
(2)△ABC中任意一點(diǎn)P(x0,y0)經(jīng)平移后對(duì)應(yīng)點(diǎn)為P1(x0+3,y0﹣4),將△ABC作同樣的平移得到△A1B1C1,寫(xiě)出A1、B1、C1的坐標(biāo).A1 ,B1 ,C1 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩直線AB,CD相交于點(diǎn)O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,
(1)求∠DOE的度數(shù);
(2)若OF⊥OE,求∠COF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,E為弦AC的延長(zhǎng)線上一點(diǎn),DE與⊙O相切于點(diǎn)D,且DE⊥AC,連結(jié)OD,若AB=10,AC=6,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,D為AB邊上任意一點(diǎn),DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,
(1)如圖1所示,當(dāng)α=60°時(shí),求證:△DCE是等邊三角形;
(2)如圖2所示,當(dāng)α=45°時(shí),求證:=;
(3)如圖3所示,當(dāng)α為任意銳角時(shí),請(qǐng)直接寫(xiě)出線段CE與DE的數(shù)量關(guān)系:=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線MN交AB于點(diǎn)D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為( )
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD⊥BC于點(diǎn)D,∠BAD=∠CAD,BE平分∠ABC交AC于E,∠C=42°,若點(diǎn)F為線段BC上的一點(diǎn),當(dāng)△EFC為直角三角形時(shí),∠BEF的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B,F,C,E在同一直線上,AC,DF相交于點(diǎn)G,且△ABC≌△DEF
(1)若△ABC的周長(zhǎng)為12cm,AB=3cm,BC=4cm,求DF的長(zhǎng).
(2)若DE⊥BC與點(diǎn)E,∠A=65°,求∠AGF的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com