“6”字形圖中,FM是大⊙O的直徑,BC與大⊙O相切于B,OB與小⊙O相交于點A,ADBC,CDBHFMDHBHH,設(shè)∠FOB=α,OB=4,BC=6.

(1)求證:AD為小⊙O的切線;

(2)在圖中找出一個可用α表示的角,并說明你這樣表示的理由;(根據(jù)所寫結(jié)果的正確性及所需推理過程的難易程度得分略有差異)

(3)當α=30º時,求DH的長。(結(jié)果保留根號)

                      

(1)證明:∵是大⊙O的切線,

                  ∴∠=90°.

              ∵

              ∴∠OAD=90°.即.

           又 ∵點A在小⊙O,

              ∴AD是小⊙O的切線. (2)答案不唯一,略。     

 (3)∵,

    ∴四邊形是平行四邊形.

      ∴.      

      ∵,∴.

      ∴.

    又∵,

      ∴.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知“6”字形圖中,F(xiàn)M是大⊙O的直徑,BC與大⊙O相切于B,OB與小⊙O相交于A,AD∥BC,CD∥BH∥FM,DH⊥BH于H,設(shè)∠FOB=30°,OB=4,BC=6.精英家教網(wǎng)
﹙1﹚求證:AD為小⊙O的切線;
﹙2﹚求DH的長.﹙結(jié)果保留根號﹚

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

“6”字形圖中,F(xiàn)M是大⊙O的直徑,BC與大⊙O相切于B,OB與小⊙O相交于A,AD∥BC,CD∥B精英家教網(wǎng)H∥FM,DH⊥BH于H,設(shè)∠FOB=α,OB=4,BC=6.
(1)求證:AD為小⊙O的切線;
(2)在圖中找出一個可用α表示的角,并說明你這樣表示的理由;(根據(jù)所寫結(jié)果的正確性及所需推理過程的難易程度得分略有差異)
(3)當α=30°時,求DH的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本小題滿分8分)

   “6”字形圖中,F(xiàn)M是大⊙O的直徑,BC與大⊙O相切于B,

OB與小⊙O相交于點A,AD∥BC,CD∥BH∥FM,DH⊥BH于H,

設(shè)∠FOB=α,OB=4,BC=6.

(1)求證:AD為小⊙O的切線;

(2)在圖中找出一個可用α表示的角,并說明你這樣表示的理由;(根據(jù)所寫結(jié)果的正確性及所需推理過程的難易程度得分略有差異)

(3)當α=30º時,求DH的長。(結(jié)果保留根號)

                      

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【改編】(本小題滿分8分)
“6”字形圖中,F(xiàn)M是大⊙O的直徑,BC與大⊙O相切于B,OB與小⊙O相交于點A,AD∥BC,CD∥BH∥FM,DH⊥BH于H,設(shè)∠FOB=α,OB=4,BC=6.
(1)求證:AD為小⊙O的切線;

 

 
(2)在圖中找出一個可用α表示的角,并說明你這樣表示的理由;(根據(jù)所寫結(jié)果的正確性及所需推理過程的難易程度得分略有差異)

(3)當α=30º時,求DH的長。(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源:2012年江西撫州市崇仁四中初三第二次月考數(shù)學試卷(帶解析) 題型:解答題

已知“6”字形圖中,F(xiàn)M是大⊙O的直徑, BC與大⊙O相切于B, OB與小⊙O相交于A, AD∥BC,CD∥BH∥FM, DH⊥BH于H,設(shè)∠FOB=30°,OB="4," BC=6.

﹙1﹚求證:AD為小⊙O的切線;
﹙2﹚求DH的長.﹙結(jié)果保留根號﹚

查看答案和解析>>

同步練習冊答案