【題目】如圖,一次函數(shù)的圖象l經(jīng)過點A(2,5),B(-4,-1)兩點.
(1)求一次函數(shù)表達(dá)式.
(2)若點E在x軸上,且E(2,O),點C為直線l與x軸的交點,求△CDE的面積.
(3)你能求出點E到直線l的距離嗎?
【答案】(1) y=x+3;(2) ;(3)
【解析】
(1)設(shè)一次函數(shù)表達(dá)式y=kx+b,將A(2,5),B(-4,-1)代入組成方程組,解得k,b可得解析式;
(2)連接DE,由三角形的面積公式可得:
(3)利用△ACE的面積公式可得點E到直線l的距離.
(1)設(shè)一次函數(shù)表達(dá)式y=kx+b,
將A(2,5),B(﹣4,﹣1)代入組成方程組,
解得:,
∴一次函數(shù)表達(dá)式為:y=x+3;
(2)令y=0,則0=x+3,
∴x=﹣3,
∴C點坐標(biāo)為(﹣3,0);
令x=0,y=3;
∴D點坐標(biāo)為(0,3);
(3)連接DE,
(4)∵△ACE的面積為:
∴點E到直線l的距離為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1所示,在△ABC中,EF∥BC,點D在EF上,BD、CD分別平分∠ABC、∠ACB,若已知BE=3,CF=5,求EF的長度;
(2)如圖2所示,BD平分∠ABC、CD平分∠ACG,DE∥BC交AB于點E,交AC于點F,線段EF與BE、CF有什么數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分) 如圖1,將△ABC紙片沿中位線EH折疊,使點A的對稱點D落在BC邊上,再將紙片分別沿等腰△BED和等腰△DHC的底邊上的高線EF,HG折疊,折疊后的三個三角形拼合形成一個矩形.類似地,對多邊形進(jìn)行折疊,若翻折后的圖形恰能拼合成一個無縫隙、無重疊的矩 形,這樣的矩形稱為疊合矩形.
(1)將□ABCD紙片按圖2的方式折疊成一個疊合矩形AEFG,則操作形成的折痕分別是線段 , ;S矩形AEFG:S□ABCD=
(2)ABCD紙片還可以按圖3的方式折疊成一個疊合矩形EFGH,若EF=5,EH=12,求AD的長.
(3)如圖4,四邊形ABCD紙片滿足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把該紙片折疊,得到疊合正方形.請你幫助畫出疊合正方形的示意圖,并求出AD,BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商人制成了一個如圖所示的轉(zhuǎn)盤,取名為“開心大轉(zhuǎn)盤”,游戲規(guī)定:參與者自由轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母“A”,則收費2元,若指針指向字母“B”,則獎勵3元;若指針指向字母“C”,則獎勵1元.一天,前來尋開心的人轉(zhuǎn)動轉(zhuǎn)盤80次,你認(rèn)為該商人是盈利的可能性大還是虧損的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,借助直角三角板可以找到一元二次方程的實數(shù)根,比如對于方程 ,操作步驟是:
第一步:根據(jù)方程系數(shù)特征,確定一對固定點A(0,1),B(5,2);
第二步:在坐標(biāo)平面中移動一個直角三角板,使一條直角邊恒過點A,另一條直角邊恒過點B;
第三步:在移動過程中,當(dāng)三角板的直角頂點落在x軸上點C處時,點C 的橫坐標(biāo)m即為該方程的一個實數(shù)根(如圖1)
第四步:調(diào)整三角板直角頂點的位置,當(dāng)它落在x軸上另一點D處時,點D 的橫坐標(biāo)為n即為該方程的另一個實數(shù)根。
(1)在圖2 中,按照“第四步“的操作方法作出點D(請保留作出點D時直角三角板兩條直角邊的痕跡)
(2)結(jié)合圖1,請證明“第三步”操作得到的m就是方程 的一個實數(shù)根;
(3)上述操作的關(guān)鍵是確定兩個固定點的位置,若要以此方法找到一元二次方程 的實數(shù)根,請你直接寫出一對固定點的坐標(biāo);
(4)實際上,(3)中的固定點有無數(shù)對,一般地,當(dāng) , , , 與a,b,c之間滿足怎樣的關(guān)系時,點P( , ),Q( , )就是符合要求的一對固定點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明袋子中有1個紅球、1 個綠球和n個白球,這些球除顏色外都相同.
(1)從袋中隨機摸出1個球,記錄下顏色后放回袋子中并攪勻,不斷重復(fù)該試驗.發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.75,則n的值為;
(2)當(dāng)n=2時,把袋中的球攪勻后任意摸出2個球,求摸出的2個球顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=60°,OA=OB,動點C從點O出發(fā),沿射線OB方向移動,以AC為邊在右側(cè)作等邊△ACD,連接BD,則BD所在直線與OA所在直線的位置關(guān)系是( 。
A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一內(nèi)部裝有水的直圓柱形水桶,桶高20公分;另有一直圓柱形的實心鐵柱,柱高30公分,直立放置于水桶底面上,水桶內(nèi)的水面高度為12公分,且水桶與鐵柱的底面半徑比為2:1.今小賢將鐵柱移至水桶外部,過程中水桶內(nèi)的水量未改變,若不計水桶厚度,則水桶內(nèi)的水面高度變?yōu)槎嗌俟?( 。?/span>
A.4.5
B.6
C.8
D.9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com