【題目】在讀書月活動中,學(xué)校準備購買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個類別進行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 名同學(xué);
(2)條形統(tǒng)計圖中,m= ,n= ;
(3)扇形統(tǒng)計圖中,藝術(shù)類讀物所在扇形的圓心角是 度;
(4)學(xué)校計劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計學(xué)校購買其他類讀物多少冊比較合理?
【答案】解:(1)200。
(2) 40;60。
(3)72.
(4)由題意,得(冊)。
答:學(xué)校購買其他類讀物900冊比較合理。
【解析】(1)∵從條形圖得出文學(xué)類人數(shù)為:70,從扇形圖得出文學(xué)類所占百分比為:35%,
∴本次調(diào)查中,一共調(diào)查了:70÷35%=200人。
(2)∵從扇形圖得出科普類所占百分比為:30%,
∴科普類人數(shù)為:n=200×30%=60人, 藝術(shù)類人數(shù)為:m=200﹣70﹣30﹣60=40人。
(3)根據(jù)藝術(shù)類讀物所在扇形的圓心角是:40÷200×3600=72°。
(4)根據(jù)喜歡其他類讀物人數(shù)所占的百分比,即可估計6000冊中其他讀物的數(shù)量。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】被歷代數(shù)學(xué)家尊為“算經(jīng)之首”的《九章算術(shù)》是中國古代算法的扛鼎之作.《九章算術(shù)》中記載:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕.一雀一燕交而處,衡適平.并燕、雀重一斤.問燕、雀一枚各重幾何?”
譯文:“今有只雀、只燕,分別聚焦而且用衡器稱之,聚在一起的雀重,燕輕.經(jīng)一只雀、一只燕交換位置而放,重量相等.只雀、只燕重量為斤.問雀、燕每只各重多少斤?”
請列方程組解答上面的問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知|2a+b|與互為相反數(shù).
(1)求2a-3b的平方根;
(2)解關(guān)于x的方程ax2+4b-2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板按如圖放置,則下列結(jié)論:
①如果∠2=30°,則有AC∥DE;
②∠BAE+∠CAD =180°;
③如果BC∥AD,則有∠2=45°;
④如果∠CAD=150°,必有∠4=∠C;
正確的有( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若不等式組3<x≤a的整數(shù)解恰有4個,則a的取值范圍是( )
A. a>7B. 7<a<8C. 7≤a<8D. 7<a≤8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.
(1)請寫出圖2中陰影部分的面積:;
(2)觀察圖2你能寫出下列三個代數(shù)式之間的等量關(guān)系嗎?代數(shù)式:(m+n)2 , (m﹣n)2 , mn.;
(3)根據(jù)(2)中的等量關(guān)系,解決如下問題:若a+b=7,ab=5,求a﹣b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師為了了解學(xué)生暑期在家的閱讀情況,隨機調(diào)查了20名學(xué)生某一天的閱讀小時數(shù),具體情況統(tǒng)計如下表:
閱讀時間(小時) | 2 | 2.5 | 3 | 3.5 | 4 |
學(xué)生人數(shù)(名) | 1 | 2 | 8 | 6 | 3 |
則關(guān)于這20名學(xué)生閱讀小時數(shù)的說法正確的是( )
A. 中位數(shù)是3 B. 中位數(shù)是3.5 C. 眾數(shù)是8 D. 眾數(shù)是4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,如果兩個三角形全等,則它們面積相等,而兩個不全等的三角形,在某些情況下,可通過證明等底等高來說明它們的面積相等.已知△ABC與△DEC是等腰直角三角形,∠ACB=∠DCE=90°,連接AD、BE.
(1)如圖1,當(dāng)∠BCE=90°時,求證:S△ACD=S△BCE;
(2)如圖2,當(dāng)0°<∠BCE<90°時,上述結(jié)論是否仍然成立?如果成立,請證明;如果不成立,說明理由.
(3)如圖3,在(2)的基礎(chǔ)上,作CF⊥BE,延長FC交AD于點G,求證:點G為AD中點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com