【題目】自2017年3月起,成都市中心城區(qū)居民用水實(shí)行以戶為單位的三級階梯收費(fèi)辦法:
第I級:居民每戶每月用水18噸以內(nèi)含18噸每噸收水費(fèi)a元;
第Ⅱ級:居民每戶每月用水超過18噸但不超過25噸,未超過18噸的部分按照第Ⅰ級標(biāo)準(zhǔn)收費(fèi),超過部分每噸收水費(fèi)b元;
第Ⅲ級:居民每戶每月用水超過25噸,未超過25噸的部分按照第I、Ⅱ級標(biāo)準(zhǔn)收費(fèi),超過部分每噸收水費(fèi)c元.
設(shè)一戶居民月用水x噸,應(yīng)繳水費(fèi)為y元,y與x之間的函數(shù)關(guān)系如圖所示
(1)根據(jù)圖象直接作答:a= ,b= ;
(2)求當(dāng)x≥25時y與x之間的函數(shù)關(guān)系;
(3)把上述水費(fèi)階梯收費(fèi)辦法稱為方案①,假設(shè)還存在方案②:居民每戶月用水一律按照每噸4元的標(biāo)準(zhǔn)繳費(fèi),請你根據(jù)居民每戶月“用水量的大小設(shè)計(jì)出對居民繳費(fèi)最實(shí)惠的方案.(寫出過程)
【答案】(1)3;4;(2)當(dāng)x≥25時,y與x之間的函數(shù)關(guān)系式為y=6x﹣68;(3)當(dāng)x<34時,選擇繳費(fèi)方案①更實(shí)惠;當(dāng)x=34時,選擇兩種繳費(fèi)方案費(fèi)用相同;當(dāng)x>34時,選擇繳費(fèi)方案②更實(shí)惠
【解析】
(1)根據(jù)單價=總價÷數(shù)量可求出a,b的值,此問得解;
(2)觀察函數(shù)圖象,找出點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出當(dāng)x≥25時y與x之間的函數(shù)關(guān)系;
(3)由總價=單價×數(shù)量可找出選擇繳費(fèi)方案②需交水費(fèi)y(元)與用水?dāng)?shù)量x(噸)之間的函數(shù)關(guān)系式,分別找出當(dāng)6x﹣68<4x,6x﹣68=4x,6x﹣68>4x時x的取值范圍(x的值),選擇費(fèi)用低的方案即可得出結(jié)論.
(1)a=54÷18=3,
b=(82﹣54)÷(25﹣18)=4.
故答案為:3;4.
(2)設(shè)當(dāng)x≥25時,y與x之間的函數(shù)關(guān)系式為y=mx+n(m≠0),
將(25,82),(35,142)代入y=mx+n,得:,
解得:,
∴當(dāng)x≥25時,y與x之間的函數(shù)關(guān)系式為y=6x﹣68.
(3)根據(jù)題意得:選擇繳費(fèi)方案②需交水費(fèi)y(元)與用水?dāng)?shù)量x(噸)之間的函數(shù)關(guān)系式為y=4x.
當(dāng)6x﹣68<4x時,x<34;
當(dāng)6x﹣68=4x時,x=34;
當(dāng)6x﹣68>4x時,x>34.
∴當(dāng)x<34時,選擇繳費(fèi)方案①更實(shí)惠;當(dāng)x=34時,選擇兩種繳費(fèi)方案費(fèi)用相同;當(dāng)x>34時,選擇繳費(fèi)方案②更實(shí)惠.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一元二次方程滿足a+b+c=0,我們稱這個方程為“鳳凰”方程.已知是鳳凰方程,且有兩個相等的實(shí)數(shù)根,則下列正確的是( 。
A.a=cB.a=bC.b=cD.a=b=c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為好玩三角形.若Rt△ABC是好玩三角形,且∠C=90°,BC≥AC,則sinB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E,F為對角線BD上的兩點(diǎn),且∠DAE=∠BCF.
求證:(1)AE=CF;
(2)四邊形AECF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,⊙O過正方形ABCD的頂點(diǎn)A、D且與邊BC相切于點(diǎn)E,分別交AB、DC于點(diǎn)M、N.動點(diǎn)P在⊙O或正方形ABCD的邊上以每秒一個單位的速度做連續(xù)勻速運(yùn)動.設(shè)運(yùn)動的時間為x,圓心O與P點(diǎn)的距離為y,圖2記錄了一段時間里y與x的函數(shù)關(guān)系,在這段時間里P點(diǎn)的運(yùn)動路徑為( )
A. 從D點(diǎn)出發(fā),沿弧DA→弧AM→線段BM→線段BC
B. 從B點(diǎn)出發(fā),沿線段BC→線段CN→弧ND→弧DA
C. 從A點(diǎn)出發(fā),沿弧AM→線段BM→線段BC→線段CN
D. 從C點(diǎn)出發(fā),沿線段CN→弧ND→弧DA→線段AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,,,點(diǎn)是邊上一點(diǎn),過點(diǎn)分別作與的垂線,過點(diǎn)作的垂線,得到矩形和矩形,則這兩個矩形的面積之和的最大值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓與實(shí)驗(yàn)樓的水平間距米,在實(shí)驗(yàn)樓頂部點(diǎn)測得教學(xué)樓頂部點(diǎn)的仰角是,底部點(diǎn)的俯角是,則教學(xué)樓的高度是____米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L:y=﹣x+2與x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)N(0,4),動點(diǎn)M從A點(diǎn)以每秒1個單位的速度勻速沿x軸向左移動.
(1)點(diǎn)A的坐標(biāo):_____;點(diǎn)B的坐標(biāo):_____;
(2)求△NOM的面積S與M的移動時間t之間的函數(shù)關(guān)系式;
(3)在y軸右邊,當(dāng)t為何值時,△NOM≌△AOB,求出此時點(diǎn)M的坐標(biāo);
(4)在(3)的條件下,若點(diǎn)G是線段ON上一點(diǎn),連結(jié)MG,△MGN沿MG折疊,點(diǎn)N恰好落在x軸上的點(diǎn)H處,求點(diǎn)G的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com