【題目】如圖,在平面直角坐標(biāo)系中,拋物線交軸于點(diǎn),交軸正半軸于點(diǎn),與過點(diǎn)的直線相交于另一點(diǎn),過點(diǎn)作軸,垂足為.
(1)求拋物線的解析式.
(2)點(diǎn)是軸正半軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸,交直線于點(diǎn),交拋物線于點(diǎn).
①若點(diǎn)在線段上(不與點(diǎn),重合),連接,求面積的最大值.
②設(shè)的長(zhǎng)為,是否存在,使以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形?若存在,求出的值;若不存在,請(qǐng)說明理由.
【答案】(1);(2)①;②存在,當(dāng)時(shí),以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形.
【解析】
(1)把,帶入即可求得解析式;
(2)先用含m的代數(shù)式表示點(diǎn)P、M的坐標(biāo),再根據(jù)三角形的面積公式求出PCM的面積和m的函數(shù)關(guān)系式,然后求出PCM的最大值;
(3)由平行四邊形的性質(zhì)列出關(guān)于t的一元二次方程,解方程即可得到結(jié)論
解:(1)∵拋物線過點(diǎn)、點(diǎn),
∴解得
∴拋物線的解析式為.
(2)∵拋物線與軸交于點(diǎn),
∴可知點(diǎn)坐標(biāo)為.
∴可設(shè)直線的解析式為.
把點(diǎn)代人中,得,
∴.
∴直線的解析式為.
①∵軸,
∴.
設(shè),則,且.
∴,
∴.
∴.
∴當(dāng)時(shí),的面積最大,最大值為.
②存在.
由題可知,.
∴當(dāng)時(shí),以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形.
已知的長(zhǎng)為,所以,.
∴.
∴當(dāng)時(shí),
解得(不符合題意,舍去),;
當(dāng)時(shí),,
∴此方程無實(shí)數(shù)根.
綜上,當(dāng)時(shí),以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了“創(chuàng)建文明城市,建設(shè)美麗家園”,我市某社區(qū)將轄區(qū)內(nèi)的一塊面積為的空地進(jìn)行綠化,一部分種草,剩余部分栽花.設(shè)種草部分的面積為,種草所需費(fèi)用(元)與的函數(shù)關(guān)系式為,其大致圖象如圖所示.栽花所需費(fèi)用(元)與的函數(shù)關(guān)系式為.
(1)求出,的值;
(2)若種花面積不小于時(shí)的綠化總費(fèi)用為(元),寫出與的函數(shù)關(guān)系式,并求出綠化總費(fèi)用的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,1),B(-1,)兩點(diǎn).
(1)求m、k、b的值;
(2)連接OA、OB,計(jì)算三角形OAB的面積;
(3)結(jié)合圖象直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣4x2﹣8mx﹣m2+2m的頂點(diǎn)p.
(1)點(diǎn)p的坐標(biāo)為 (含m的式子表示)
(2)當(dāng)﹣1≤x≤1時(shí),y的最大值為5,則m的值為多少;
(3)若拋物線與x軸(不包括x軸上的點(diǎn))所圍成的封閉區(qū)域只含有1個(gè)整數(shù)點(diǎn),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有且僅有一組對(duì)角相等的凸四邊形叫做“準(zhǔn)平行四邊形”.例如:凸四邊形中,若,則稱四邊形為準(zhǔn)平行四邊形.
(1)如圖①,是上的四個(gè)點(diǎn),,延長(zhǎng)到,使.求證:四邊形是準(zhǔn)平行四邊形;
(2)如圖②,準(zhǔn)平行四邊形內(nèi)接于,,若的半徑為,求的長(zhǎng);
(3)如圖③,在中,,若四邊形是準(zhǔn)平行四邊形,且,請(qǐng)直接寫出長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+3的圖象與反比例函數(shù)y=(x>0,k是常數(shù))的圖象交于A(a,2),B(4,b)兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2)點(diǎn)C是第一象限內(nèi)一點(diǎn),連接AC,BC,使AC∥x軸,BC∥y軸,連接OA,OB.若點(diǎn)P在y軸上,且△OPA的面積與四邊形OACB的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=ax2+bx+(a>0,b<0)的圖象與x軸只有一個(gè)公共點(diǎn)A.
(1)當(dāng)a=時(shí),求點(diǎn)A的坐標(biāo);
(2)求A點(diǎn)的坐標(biāo)(只含b的代數(shù)式來表示);
(3)過點(diǎn)A的直線y=x+k與二次函數(shù)的圖象相交于另一點(diǎn)B,當(dāng)b≥﹣1時(shí),求點(diǎn)B的橫坐標(biāo)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A(-3,2),B(0,-2)其對(duì)稱軸為直線x= ,C(0, )為y軸上一點(diǎn),直線AC與拋物線交于另一點(diǎn)D,
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)F使△ADF是直角三角形,如果存在,求出點(diǎn)F的坐標(biāo),如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a>0)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為-1,3.與y軸負(fù)半軸交于點(diǎn)C,在下面五個(gè)結(jié)論中:①2a-b=0;②a+b+c>0;③c=-3a;④只有當(dāng)a= 時(shí),△ABD是等腰直角三角形;⑤使△ACB為等腰三角形的a值可以有三個(gè).其中正確的結(jié)論是( )
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com