【題目】如圖,一次函數(shù)y=k1x﹣1的圖象經(jīng)過A(0,﹣1)、B(1,0)兩點,與反比例函數(shù)y=的圖象在第一象限內(nèi)的交點為M,若△OBM的面積為1.
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)在x軸上是否存在點P,使AM⊥PM?若存在,求出點P的坐標;若不存在,說明理由;
(3)x軸上是否存在點Q,使△QBM∽△OAM?若存在,求出點Q的坐標;若不存在,說明理由.
【答案】(1)反比例函數(shù)解析式為:y=;(2)P(5,0);(3)Q點坐標為:(,0).
【解析】
試題(1)利用已知點B坐標代入一次函數(shù)解析式得出答案,再利用△OBM的面積得出M點縱坐標,再利用相似三角形的判定與性質(zhì)得出M點坐標即可得出反比例函數(shù)解析式;
(2)過點M作PM⊥AM,垂足為M,得出△AOB∽△PMB,進而得出BP的長即可得出答案;
(3)利用△QBM∽△OAM,得出=,進而得出OQ的長,即可得出答案.
解:(1)如圖1,過點M作MN⊥x軸于點N,
∵一次函數(shù)y=k1x﹣1的圖象經(jīng)過A(0,﹣1)、B(1,0)兩點,
∴0=k1﹣1,AO=BO=1,
解得:k1=1,
故一次函數(shù)解析式為:y=x﹣1,
∵△OBM的面積為1,BO=1,
∴M點縱坐標為:2,
∵∠OAB=∠MNB,∠OBA=∠NBM,
∴△AOB∽△MNB,
∴==,
則BN=2,
故M(3,2),
則xy=k2=6,
故反比例函數(shù)解析式為:y=;
(2)如圖2,過點M作PM⊥AM,垂足為M,
∵∠AOB=∠PMB,∠OBA=∠MBP,
∴△AOB∽△PMB,
∴=,
由(1)得:AB==,BM==2,
故=,
解得:BP=4,
故P(5,0);
(3)如圖3,∵△QBM∽△OAM,
∴=,
由(2)可得AM=3,
故=,
解得:QB=,
則OQ=,
故Q點坐標為:(,0).
科目:初中數(shù)學 來源: 題型:
【題目】在正方形中,點是邊上一個動點,連結(jié),,點,分別為,的中點,連結(jié)交直線于點E.
(1)如圖1,當點與點重合時,的形狀是_____________________;
(2)當點在點M的左側(cè)時,如圖2.
①依題意補全圖2;
②判斷的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上三點M,O,N對應的數(shù)分別是-1,0,3,點P為數(shù)軸上任意點,其對應的數(shù)為x.如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設t分鐘時P點到點M、點N的距離相等,則t的值為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了培養(yǎng)學生的閱讀習慣,某校開展了“讀好書,助成長”系列活動,并準備購置一批圖書,購書前,對學生喜歡閱讀的圖書類型進行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計圖,如圖所示,根據(jù)統(tǒng)計圖所提供的信息,回答下列問題:
(1)本次調(diào)查共抽查了 名學生;
(2)兩幅統(tǒng)計圖中的m= ,n= .
(3)已知該校共有960名學生,請估計該校喜歡閱讀“A”類圖書的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景
如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。
類比研究
如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(D,E,F(xiàn)三點不重合)。
(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明;
(2)△DEF是否為正三角形?請說明理由;
(3)進一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設,,,請?zhí)剿?/span>,,滿足的等量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=9,AD=4.E為CD邊上一點,CE=6.點P從點B出發(fā),以每秒1個單位的速度沿著邊BA向終點A運動,連接PE.設點P運動的時間為t秒.
(1)求AE的長;
(2)當t為何值時,△PAE為直角三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某風景區(qū)計劃在綠化區(qū)域種植銀杏樹,現(xiàn)甲、乙兩家有相同的銀杏樹苗可供選擇,其具體銷售方案如下:
甲 | 乙 | ||
購樹苗數(shù)量 | 銷售單價 | 購樹苗數(shù)量 | 銷售單價 |
不超過500棵時 | 800元/棵 | 不超過1000棵時 | 800元/棵 |
超過500棵的部分 | 700元/棵 | 超過1000棵的部分 | 600元/棵 |
設購買銀杏樹苗x棵,到兩家購買所需費用分別為y甲元、y乙元
(1)該風景區(qū)需要購買800棵銀杏樹苗,若都在甲家購買所要費用為 元,若都在乙家購買所需費用為 元;
(2)當x>1000時,分別求出y甲、y乙與x之間的函數(shù)關(guān)系式;
(3)如果你是該風景區(qū)的負責人,購買樹苗時有什么方案,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCF中,∠ABC=60°,延長BA至點D,延長CB至點E,使BE=AD,連結(jié)CD,EA,延長EA交CD于點G.
(1)求證:△ACE≌△CBD;
(2)求∠CGE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,以△ABC的邊AB為直徑作⊙O,交AC邊于點E,BD平分∠ABE交AC于F,交⊙O于點D,且∠BDE=∠CBE.
(1)求證:BC是⊙O的切線;
(2)延長ED交直線AB于點P,如圖2,若PA=AO,DE=3,DF=2,求的值及AO的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com