【題目】如圖,在Δ中,已知中點,點在線段上以每秒的速度由點向點運動,同時點在線段上由點向點運動。當點的運動速度為每秒____時,能夠在某一時刻使得ΔΔ全等

【答案】.

【解析】

設當△BPD與△CQP全等時,點Q的運動速度為每秒x個單位長度,時間為t,求出BD,求出∠B=C,根據(jù)全等三角形的判定得出兩種情況,分別求出即可.

解:設當BPDCQP全等時點Q的運動速度為每秒x個單位長度,時間為t

AB=AC,

∴∠B=C

AB=24,DAB的中點,

BD=12,

BPDCQP全等,則有兩種情況:

BD=CP,BP=CQ

,

解得:

BD=CQ,BP=CP,

12=xt,4t=16-4t,

解得:,,

∴當點的運動速度為每秒時,使得三角形Δ與Δ全等.

故答案為:.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系xoy中,直線y=x+x軸于點B,交y軸于點A,過點C1,0)作x軸的垂線l,將直線l繞點C按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為αα180°.

1)當直線l與直線y=x+平行時,求出直線l的解析式;

2)若直線l經(jīng)過點A,①求線段AC的長;②直接寫出旋轉(zhuǎn)角α的度數(shù);

3)若直線l在旋轉(zhuǎn)過程中與y軸交于D點,當ABDACD、BCD均為等腰三角形時,直接寫出符合條件的旋轉(zhuǎn)角α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為圓O的直徑,點C為圓O上一點,若∠BAC=∠CAM,過點C作直線l垂直于射線AM,垂足為點D.

(1)試判斷CD與圓O的位置關(guān)系,并說明理由;

(2)若直線lAB的延長線相交于點E,圓O的半徑為3,并且∠CAB=30°,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,二次函數(shù)yax22ax3aa0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D

1)求頂點D的坐標(用含a的代數(shù)式表示);

2)若以AD為直徑的圓經(jīng)過點C

①求拋物線的函數(shù)關(guān)系式;

②如圖2,點Ey軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點PM、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MFx軸于點F,若線段MFBF12,求點MN的坐標;

③點Q在拋物線的對稱軸上,以Q為圓心的圓過AB兩點,并且和直線CD相切,如圖3,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,BAC=50°,BAC的平分線與AB的垂直平分線交于點O、點C沿EF折疊后與點O重合,則CEF的度數(shù)是( 。

A. 60° B. 55° C. 50° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.

(1)該玩具銷售單價定為多少元時,商場能獲得12000元的銷售利潤?

(2)該玩具銷售單價定為多少元時,商場獲得的銷售利潤最大?最大利潤是多少?

(3)若玩具廠規(guī)定該品牌玩具銷售單價不低于46元,且商場要完成不少于500件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2+bxa≠0)中自變量x和函數(shù)值y的部分對應值如下表:

x

﹣2.5

﹣2

﹣1

0

0.5

y

﹣5

0

4

0

﹣5

(1)求二次函數(shù)解析式,并寫出頂點坐標;

(2)在直角坐標系中畫出該拋物線的圖象;

(3)若該拋物線上兩點Ax1y1)、Bx2,y2)的橫坐標滿足x1x2<﹣1,試比較y1y2的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,.

1)尺規(guī)作圖(保留作圖痕跡,不寫作法與證明):

①作的平分線交邊于點;

②過點于點;

2)在(1)所畫圖中,若,則長為________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtAOB,∠AOB=90°,已知點A(﹣1,﹣1),B在第二象限,OB=拋物線經(jīng)過點AB

(1)求點B的坐標;

(2)求拋物線的對稱軸

(3)如果該拋物線的對稱軸分別和邊AO、BO的延長線交于點CD,設點E在直線AB,BOEBCD相似時,直接寫出點E的坐標

查看答案和解析>>

同步練習冊答案