【題目】小明與小亮玩游戲,如圖,兩組相同的卡片,每組三張,第一組卡片正面分別標(biāo)有數(shù)字1,3,5;第二組卡片正面分別標(biāo)有數(shù)字2,4,6.他們將卡片背面朝上,分組充分洗勻后,從每組卡片中各摸出一張,稱為一次游戲.當(dāng)摸出的兩張卡片的正面數(shù)字之積小于10,則小明獲勝;當(dāng)摸出的兩張卡片的正面數(shù)字之積超過10,則小亮獲勝.你認(rèn)為這個游戲規(guī)則對雙方公平嗎?請說明理由.
【答案】這個游戲規(guī)則對雙方公平,理由見解析.
【解析】
畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出摸出的兩張卡片的正面數(shù)字之積小于10的結(jié)果數(shù)和摸出的兩張卡片的正面數(shù)字之積超過10的結(jié)果數(shù),然后根據(jù)概率公式計算出所以小明獲勝的概率和小亮獲勝的概率,再通過比較兩概率的大小判斷游戲是否公平.
解:這個游戲規(guī)則對雙方公平.理由如下:
畫樹狀圖為:
共有9種等可能的結(jié)果數(shù),其中摸出的兩張卡片的正面數(shù)字之積小于10的結(jié)果數(shù)為4;摸出的兩張卡片的正面數(shù)字之積超過10的結(jié)果數(shù)為4,
所以小明獲勝的概率=,小亮獲勝的概率=.
所以這個游戲規(guī)則對雙方公平.
故答案為:這個游戲規(guī)則對雙方公平,理由見解析.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“表1”為初三(1)班全部43名同學(xué)某次數(shù)學(xué)測驗成績的統(tǒng)計結(jié)果,則下列說法正確的是( )
成績(分) | 70 | 80 | 90 |
男生(人) | 5 | 10 | 7 |
女生(人) | 4 | 13 | 4 |
A.男生的平均成績大于女生的平均成績
B.男生的平均成績小于女生的平均成績
C.男生成績的中位數(shù)大于女生成績的中位數(shù)
D.男生成績的中位數(shù)小于女生成績的中位數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點A順時針旋轉(zhuǎn)30°到AB′C′D′的位置,則圖中陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子中裝有紅、黃兩種顏色的球共20個,每個球除顏色外完全相同.某學(xué)習(xí)興趣小組做摸球?qū)嶒,將球攪勻后從中隨機摸出1個球,記下顏色后再放回袋中,不斷重復(fù).下表是活動進行中的部分統(tǒng)計數(shù)據(jù).
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到紅球的次數(shù)m | 59 | 96 | 118 | 290 | 480 | 601 |
摸到紅球的頻率 | 0.59 | 0.58 | 0.60 | 0.601 |
(1)完成上表;
(2)“摸到紅球”的概率的估計值。ň_到0.1)
(3)試估算袋子中紅球的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B、C重合),以AD為直角邊在AD右側(cè)作等腰直角三角形ADE,且∠DAE=90°,連接CE.
(1)如圖①,當(dāng)點D在線段BC上時:
①BC與CE的位置關(guān)系為 ;
②BC、CD、CE之間的數(shù)量關(guān)系為 .
(2)如圖②,當(dāng)點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若不成立,請你寫出正確結(jié)論,并給予證明.
(3)如圖③,當(dāng)點D在線段BC的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:既相等又垂直的兩條線段稱為“等垂線段”,如圖1,在中,,,點、分別在邊、上,,連接、,點、、分別為、、的中點,且連接、.
觀察猜想
(1)線段與 “等垂線段”(填“是”或“不是”)
猜想論證
(2)繞點按逆時針方向旋轉(zhuǎn)到圖2所示的位置,連接,,試判斷與是否為“等垂線段”,并說明理由.
拓展延伸
(3)把繞點在平面內(nèi)自由旋轉(zhuǎn),若,,請直接寫出與的積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC=8,BD=6,點E,F分別是邊AB,BC的中點,點P在AC上運動,在運動過程中,存在PE+PF的最小值,則這個最小值是( 。
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B在直線l上,AB=10cm,⊙B的半徑為1cm,點C在直線l上,過點C作直線CD且∠DCB=30°,直線CD從A點出發(fā)以每秒4cm的速度自左向右平行運動,與此同時,⊙B的半徑也不斷增大,其半徑r(cm)與時間t(秒)之間的關(guān)系式為r=1+t(t≥0),當(dāng)直線CD出發(fā)多少秒直線CD恰好與⊙B相切.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com