拋物線y=ax2+bx+3經(jīng)過點(diǎn)A、B、C,已知A(-1,0),B(3,0).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,在(2)的條件下,延長(zhǎng)DP交x軸于點(diǎn)F,M(m,0)是x軸上一動(dòng)點(diǎn),N是線段DF上一點(diǎn),當(dāng)△BDC的面積最大時(shí),若∠MNC=90°,請(qǐng)直接寫出實(shí)數(shù)m的取值范圍.

解:(1)由題意得:
,
解得:,
故拋物線解析式為y=-x2+2x+3;

(2)令x=0,則y=3,即C(0,3).
設(shè)直線BC的解析式為y=kx+b′,
,解得:
故直線BC的解析式為y=-x+3.
設(shè)P(a,3-a),則D(a,-a2+2a+3),
∴PD=(-a2+2a+3)-(3-a)=-a2+3a,
∴S△BDC=S△PDC+S△PDB=PD•a+PD•(3-a)=PD•3=(-a2+3a)=-(a-2+,
∴當(dāng)a=時(shí),△BDC的面積最大,此時(shí)P(,);

(3)將x=代入y=-x2+2x+3,得y=-(2+2×+3=,
∴點(diǎn)D的坐標(biāo)為(,).
過點(diǎn)C作CG⊥DF,則CG=
①點(diǎn)N在DG上時(shí),點(diǎn)N與點(diǎn)D重合時(shí),點(diǎn)M的橫坐標(biāo)最大.
∵∠MNC=90°,∴CD2+DM2=CM2,
∵C(0,3),D(,),M(m,0),
∴(-0)2+(-3)2+(m-2+(0-2=(m-0)2+(0-3)2,
解得m=
∴點(diǎn)M的坐標(biāo)為(,0),
即m的最大值為;
②點(diǎn)N在線段GF上時(shí),設(shè)GN=x,則NF=3-x,
∵∠MNC=90°,
∴∠CNG+∠MNF=90°,
又∵∠CNG+∠NCG=90°,
∴∠NCG=∠MNF,
又∵∠NGC=∠MFN=90°,
∴Rt△NCG∽△MNF,
=,即=
整理得,MF=-x2+2x=-(x-2+,
∴當(dāng)x=時(shí)(N與P重合),MF有最大值
此時(shí)M與O重合,
∴M的坐標(biāo)為(0,0),
∴m的最小值為0,
故實(shí)數(shù)m的變化范圍為0≤m≤
分析:(1)由y=ax2+bx+3經(jīng)過點(diǎn)A(-1,0),B(3,0),利用待定系數(shù)法即可求得此拋物線的解析式;
(2)首先令x=0,求得點(diǎn)C的坐標(biāo),然后設(shè)直線BC的解析式為y=kx+b′,由待定系數(shù)法求得直線BC的解析式為y=-x+3,再設(shè)P(a,3-a),即可得D(a,-a2+2a+3),求出PD的長(zhǎng),由S△BDC=S△PDC+S△PDB,得到S△BDC=-(a-2+,利用二次函數(shù)的性質(zhì),即可求得當(dāng)△BDC的面積最大時(shí),點(diǎn)P的坐標(biāo);
(3)將x=代入拋物線解析式y(tǒng)=-x2+2x+3求出點(diǎn)P的縱坐標(biāo),過點(diǎn)C作CG⊥DF,然后分①點(diǎn)N在DG上時(shí),點(diǎn)N與點(diǎn)D重合時(shí),點(diǎn)M的橫坐標(biāo)最大,然后根據(jù)勾股定理得出CD2+DM2=CM2,列出關(guān)于m的方程,解方程求出m的最大值;②點(diǎn)N在線段GF上時(shí),設(shè)GN=x,然后表示出NF,根據(jù)同角的余角相等求出∠NCG=∠MNF,然后證明△NCG和△MNF相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例列出比例式用x表示出MF,再根據(jù)二次函數(shù)的最值問題求出y的最大值,然后求出MO,從而得到點(diǎn)M的坐標(biāo),求出m的最小值.
點(diǎn)評(píng):此題考查了待定系數(shù)法求函數(shù)的解析式、三角形的面積、相似三角形的判定與性質(zhì)、二次函數(shù)的最值、勾股定理等知識(shí).此題綜合性很強(qiáng),難度較大,注意掌握數(shù)形結(jié)合思想、分類討論思想與方程思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(2,8)在拋物線y=ax2上,則a的值為(  )
A、±2
B、±2
2
C、2
D、-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,以A(3,0)為圓心,以5為半徑的圓與x軸相交于B、C,與y軸的負(fù)半軸相交于D.
(1)若拋物線y=ax2+bx+c經(jīng)過B、C、D三點(diǎn),求此拋物線的解析式,并寫出拋物線與圓A的另一個(gè)交點(diǎn)E的坐標(biāo);
(2)若動(dòng)直線MN(MN∥x軸)從點(diǎn)D開始,以每秒1個(gè)長(zhǎng)度單位的速度沿y軸的正方向移動(dòng),且與線段CD、y軸分別交于M、N兩點(diǎn),動(dòng)點(diǎn)P同時(shí)從點(diǎn)C出發(fā),在線段OC上以每秒2個(gè)長(zhǎng)度單位的速度向原點(diǎn)O運(yùn)動(dòng),連接PM,設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),
MN•OPMN+OP
的值最大,并求出最大值;
(3)在(2)的條件下,若以P、C、M為頂點(diǎn)的三角形與△OCD相似,求實(shí)數(shù)t的值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若(2,0)、(4,0)是拋物線y=ax2+bx+c上的兩個(gè)點(diǎn),則它的對(duì)稱軸是直線( 。
A、x=0B、x=1C、x=2D、x=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)平面內(nèi),O為原點(diǎn),拋物線y=ax2+bx經(jīng)過點(diǎn)A(6,0),且頂點(diǎn)B(m,6)在直線y=2x上.
(1)求m的值和拋物線y=ax2+bx的解析式;
(2)如在線段OB上有一點(diǎn)C,滿足OC=2CB,在x軸上有一點(diǎn)D(10,0),連接DC,且直線DC與y軸交于點(diǎn)E.
①求直線DC的解析式;
②如點(diǎn)M是直線DC上的一個(gè)動(dòng)點(diǎn),在x軸上方的平面內(nèi)有另一點(diǎn)N,且以O(shè)、E、M、N為頂點(diǎn)的四邊形是菱形,請(qǐng)求出點(diǎn)N的坐標(biāo).(直接寫出結(jié)果,不需要過程.)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陜西)如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是
等腰
等腰
三角形;
(2)若拋物線y=-x2+bx(b>0)的“拋物線三角形”是等腰直角三角形,求b的值;
(3)如圖,△OAB是拋物線y=-x2+b′x(b′>0)的“拋物線三角形”,是否存在以原點(diǎn)O為對(duì)稱中心的矩形ABCD?若存在,求出過O、C、D三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案