【題目】某課外研究小組為了解學(xué)生參加課外體育活動的情況,采取抽樣調(diào)查的方法從籃球、排球、乒乓球、足球及其他等五個方面調(diào)查了若干名同學(xué)的興趣愛好(每人只能選其中一項),并將調(diào)查結(jié)果繪制成統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列問題:
(1)在這次考察中一共調(diào)查了 名學(xué)生,請補(bǔ)全條形統(tǒng)計圖;
(2)被調(diào)查同學(xué)中恰好有5名學(xué)來自初一12班,其中有2名同學(xué)選擇了籃球,有3名同學(xué)選擇了乒乓球,曹老師打算從這5名同學(xué)中選擇兩同學(xué)了解他們對體育社團(tuán)的看法,請用列表法或畫樹狀圖法,求選出的兩人恰好為一人選擇籃球、一人選擇乒乓球的概率.
【答案】(1)60,補(bǔ)圖見解析;(2)抽到一藍(lán)一乒的概率為.
【解析】試題分析:(1)根據(jù)排球的百分比和頻數(shù)可求總數(shù);
(2)用列表法求出總的事件所發(fā)生的數(shù)目,再根據(jù)概率公式即可求出剛好抽到一籃一乒的概率.
試題解析:解:(1)∵6÷10%=60,∴這次考查中一共調(diào)查了60名學(xué)生.∵該校喜歡足球的學(xué)生有:60×20%=12人,∴補(bǔ)全統(tǒng)計圖如圖:
(2)根據(jù)題意畫圖如下:
由圖可知總有20種等可能性結(jié)果,其中抽到一籃一乒的情況有12種,所以抽到一籃一乒的概率為P(一籃一乒)=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,點分別在上,且,將射線繞點逆時針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,作點關(guān)于直線的對稱點,畫直線交于點,連接,,有下列結(jié)論:
①; ②的大小隨著的變化而變化;
③當(dāng)時,四邊形為菱形; ④面積的最大值為;
其中正確的是_____________.(把你認(rèn)為正確結(jié)論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑CD垂直于不過圓心O的弦AB,垂足為點N,連接AC,點E在AB上,且AE=CE,過點B作⊙O的切線交EC的延長線于點P.
(1)求證:AC2=AEAB;
(2)試判斷PB與PE是否相等,并說明理由;
(3)設(shè)⊙O的半徑為4,N為OC的中點,點Q在⊙O上,求線段PQ的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某客運公司的特快巴士與普通巴士同時從甲地出發(fā),以各自的速度勻速向乙地行駛,普通巴士到達(dá)乙地后停止,特快巴士到達(dá)乙地停留45分鐘后,按原路以另一速度勻速返回甲地,已知兩輛巴士分別距乙地的路程y(千米)與行駛時間x(小時)之間的函數(shù)圖象如圖所示.求普通巴士到達(dá)乙地時,特快巴士與甲地之間的距離為_____千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,點 C的對應(yīng)點 C′恰好落在CB的延長線上,邊AB交邊 C′D′于點E.
(1)求證:BC=BC′;
(2)若 AB=2,BC=1,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠一個車間工人計劃一周平均每天生產(chǎn)零件300個,實際每天生產(chǎn)量與計劃每天生產(chǎn)量相比有誤差.如表是這個車間工人在某一周每天的零件生產(chǎn)情況,超計劃生產(chǎn)量為正、不足計劃生產(chǎn)量為負(fù).(單位:個)
時間 | 周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
誤差 | +10 | -15 | -6 | +12 | -10 | +18 | -11 |
(1)生產(chǎn)零件數(shù)量最少的一天比最多的一天少生產(chǎn)______個零件;
(2)若生產(chǎn)一個零件可得利潤5元,則這個車間的工人在這一周為工廠一共帶來了多少利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)公民的節(jié)水意識,合理利用水資源,某市采用價格調(diào)控手段達(dá)到節(jié)水的目的.該市自來水收費價格見價目表.
注:水費按月結(jié)算,不足1立方米的不收費.若某戶居民1月份用水8立方米,則應(yīng)交水費:2×6+4×(8-6)=20(元).
(1)若該戶居民2月份交水費16元,計算該戶居民2月份的用水量;
(2)若該戶居民3月份用水12.5立方米,則應(yīng)交水費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,對角線AC,BD交于點O,E是AD上任意一點,連接EO并延長,交BC于點F,連接AF,CE.
(1)求證:四邊形AFCE是平行四邊形;
(2)若,°,.
①直接寫出的邊BC上的高h的值;
②當(dāng)點E從點D向點A運動的過程中,下面關(guān)于四邊形AFCE的形狀的變化的說法中,正確的是
A.平行四邊形→矩形→平行四邊形→菱形→平行四邊形
B.平行四邊形→矩形→平行四邊形→正方形→平行四邊形
C.平行四邊形→菱形→平行四邊形→菱形→平行四邊形
D.平行四邊形→菱形→平行四邊形→矩形→平行四邊形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com