【題目】如圖,在平行四邊形ABCD中,AB=2AD, AH⊥BC于點(diǎn)H,ECD的中點(diǎn),連接AE、 BE、HE.

(1)求證: AE⊥BE

(2)求證:∠DEH=3 ∠ EHC

【答案】證明見(jiàn)解析

【解析】(1)分別延長(zhǎng)AE、BC交于點(diǎn)G,由角邊角可證AEDGEC,由全等三角形的性質(zhì)可得AD=CG,AE=GE,ABG是等腰三角形,由等腰三角形三線合一可得BEAE;

(2)由直角三角形斜邊上的中線等于斜邊的一半可得HE=GE,由等邊對(duì)等角得∠EHG=G,由平行四邊形的性質(zhì)得到AB=2AD由等邊對(duì)等角證得∠CEG=G,即可得證.

(1)分別延長(zhǎng)AE、BC交于點(diǎn)G,

∵四邊形ABCD是平行四邊形

AD=BC,AD//BC.

∴∠D=ECG

又∵ECD的中點(diǎn),

DE=CE,

又∵∠AED=GEC,

AEDGEC,

AD=CG,AE=GE,

又∵AB=2AD,

AB=BC+CG=BG

BE是等腰三角形ABG底邊上的中線

BEAE.

(2)AHBC,AE=GE..

HERtAHG斜邊AG上的中線

HE=GE

∴∠EHG=G

∵四邊形ABCD是平行四邊形,AB=2AD

AB=CD=2AD

又∵ECD的中點(diǎn),AD=CG

AB=CD=2CE=2CG,即CE=CG

∴∠CEG=G

∴∠CEG=AED=G=EHG.

∵∠CEG=AED,AEH=G+EHG,DEH=AED+AEH

∴∠DEH=AED+G+EHG =3EHC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從圖 2 開(kāi)始,每一個(gè)圖形都是由基本圖形通過(guò)平移或翻折拼成的:

觀察發(fā)現(xiàn),圖 10 中共有_________________個(gè)小三角形, n 共有____________個(gè)小三角形,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù)y= x2﹣3x+4,
(1)配方成y=a(x﹣h)2+k的形式.
(2)求出它的圖象的頂點(diǎn)坐標(biāo)和對(duì)稱軸.
(3)求出函數(shù)的最大或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),直線AB分別與x軸、y軸交于點(diǎn)B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點(diǎn)E,若tan∠ABO= ,OB=4,OE=2,點(diǎn)D的坐標(biāo)為(6,m).
(1)求直線AB和反比例函數(shù)的解析式;
(2)求△OCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】出租車(chē)司機(jī)小李某天下午的營(yíng)運(yùn)全是在東西走向的人民大街上進(jìn)行的.如果規(guī)定向東為正,向西為負(fù),他這天下午行車(chē)?yán)锍蹋▎挝唬呵祝┤缦拢?/span>,,,,,,

人民大街總長(zhǎng)不小于________千米;

將最后一名乘客送往目的地時(shí),小李距離下午出車(chē)時(shí)的出發(fā)點(diǎn)多遠(yuǎn)?

若出租車(chē)耗油量為每千米升,這天下午小李共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角板按如圖所示的方式擺放,其中△ABC為含有45°角的三角板,直線AD是等腰直角三角板的對(duì)稱軸,且斜邊上的點(diǎn)D為另一塊三角板DMN的直角頂點(diǎn),DM、DN分別交AB、AC于點(diǎn)E、F.則下列四個(gè)結(jié)論:BDADCD;②△AED≌△CFD;③BE+CFEF;④S四邊形AEDFBC2.其中正確結(jié)論是_____(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正確的個(gè)數(shù)是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)x,y定義一種新運(yùn)算x[]y= (其中a,b均為非零常數(shù)),這里等式右邊是通常的四則混合運(yùn)算,例如:0[]2= =﹣2b.
(1)已知1[]2=3,﹣1[]3=﹣2.請(qǐng)解答下列問(wèn)題.
①求a,b的值;
②若M=(m2﹣m﹣1)[](2m﹣2m2),則稱M是m的函數(shù),當(dāng)自變量m在﹣1≤m≤3的范圍內(nèi)取值時(shí),函數(shù)值M為整數(shù)的個(gè)數(shù)記為k,求k的值;
(2)若x[]y=y[]x,對(duì)任意實(shí)數(shù)x,y都成立(這里x[]y和y[]x均有意義),求a與b的函數(shù)關(guān)系式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一天,某客運(yùn)公司的甲、乙兩輛客車(chē)分別從相距380千米的A、B兩地同時(shí)出發(fā)相向而行,并以各自的速度勻速行駛,兩車(chē)行駛2小時(shí)時(shí)甲車(chē)先到達(dá)服務(wù)區(qū)C地,此時(shí)兩車(chē)相距20千米,甲車(chē)在服務(wù)區(qū)C地休息了20分鐘,然后按原速度開(kāi)往B地;乙車(chē)行駛2小時(shí)15分鐘時(shí)也經(jīng)過(guò)C地,未停留繼續(xù)開(kāi)往A地.(友情提醒:畫(huà)出線段圖幫助分析)

(1)乙車(chē)的速度是________千米/小時(shí),B、C兩地的距離是________千米, A、C兩地的距離是________千米;

(2)求甲車(chē)的速度;

(3)這一天,乙車(chē)出發(fā)多長(zhǎng)時(shí)間,兩車(chē)相距200千米?

查看答案和解析>>

同步練習(xí)冊(cè)答案