【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,對稱軸是直線x=-,有下列結(jié)論:(1)ab>0;(2)a+b+c<0;(3)b+2c<0;(4)a-2b+4c>0.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
根據(jù)圖象知該二次函數(shù)的對稱軸x=<0,所以得到ab>0;而x=1時,a+b+c<0;=,所以2a=3b,x=-1時,a-b+c>0,所以2a-2b+2c>0,所以得到b+2c>0;根據(jù)圖象-2b>0,c>0,a-b+c>0,b+2c>0,這幾個不等式相加即可得到④正確.
解:①∵=<0,∴ab>0,∴該結(jié)論正確;
②∵x=1時,y<0,∴a+b+c<0正確,∴該結(jié)論正確;
③=,∴2a=3b;
又x=-1時,y>0,∴a-b+c>0;
∴2a-2b+2c>0,3b-2b+2c>0;
∴b+2c>0,∴該結(jié)論錯誤;
④由圖象知a<0,ab>0;
∴b<0;
∴-2b>0(1)
圖象交y軸于正半軸,∴c>0(2);
又a-b+c>0(3),b+2c>0(4);
∴(1)+(2)+(3)+(4)得,a-2b+4c>0,∴該結(jié)論正確.
所以正確結(jié)論的個數(shù)為3.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)如圖,熱氣球的探測器顯示,從熱氣球A處看一棟高樓頂部B的仰角為30°,看這棟高樓底部C的俯角為65°,熱氣球與高樓的水平距離AD為120m.求這棟高樓的高度.(結(jié)果用含非特殊角的三角函數(shù)及根式表示即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一張長方形紙片ABCD沿對角線BD對折,使得點C落在點F處,DF交AB于E,AD=8,AB=16.
(1)求證:DE=BE;
(2)求S△BEF;
(3)若M、N分別為線段CD、DB上的動點,直接寫出(NC+NM)的最小值___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的周長為36,對角線AC、BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為( )
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王是“新星廠”的一名工人,請你閱讀下列信息:
信息一:工人工作時間:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;
信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時間的關(guān)系見下表:
生產(chǎn)甲種產(chǎn)品數(shù)(件) | 生產(chǎn)乙種產(chǎn)品數(shù)(件) | 所用時間(分鐘) |
10 | 10 | 350 |
30 | 20 | 850 |
信息三:按件計酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元;
信息四:該廠工人每月收入由底薪和計酬工資兩部分構(gòu)成,小王每月的底薪為1900元.請根據(jù)以上信息,解答下列問題:
(1)小王每生產(chǎn)一件甲種產(chǎn)品和一件乙種產(chǎn)品分別需要多少分鐘;
(2)2018年1月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,給正五邊形的頂點依次編號 12345,若從某一頂點開始,沿正五邊形的邊順時針行走,頂點編號數(shù)字是幾就走幾個邊長,則稱 這種走法為一次移位,如:小宇在編號為 3 的頂點上時,那么他應(yīng)該走 3 個邊長,即 3-4-5-1 為第一次移位,這時他到達(dá)編號為 1 的頂點;然后從 1-2 為第二次移位.若小宇從編號為 2 的頂點開始,第 14 次移位后,則他所處頂點的編號為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+mx+n的圖象經(jīng)過點P(﹣3,1),對稱軸是直線x=﹣1.
(1)求m,n的值;
(2)x取什么值時,y隨x的增大而減?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有一座拋物線形拱橋,橋下面在正常水位時,AB寬20 m,水位上升到警戒線CD時,CD到拱橋頂E的距離僅為1 m,這時水面寬度為10 m.
(1)在如圖所示的坐標(biāo)系中求拋物線的解析式;
(2)若洪水到來時,水位以每小時0.3 m的速度上升,從正常水位開始,持續(xù)多少小時到達(dá)警戒線?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)題意,解答問題:
(1)如圖1,已知直線y=2x+4與x軸、y軸分別交于A、B兩點,求線段AB的長.
(2)如圖2,類比(1)的解題過程,請你通過構(gòu)造直角三角形的方法,求出點M(3,4)與點N(﹣2,﹣1)之間的距離.
(3)在(2)的基礎(chǔ)上,若有一點D在x軸上運動,當(dāng)滿足DM=DN時,請求出此時點D的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com