【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,對稱軸是直線x=-,有下列結(jié)論:(1)ab>0;(2)a+b+c<0;(3)b+2c<0;(4)a-2b+4c>0.其中正確結(jié)論的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

根據(jù)圖象知該二次函數(shù)的對稱軸x=<0,所以得到ab>0;而x=1時,a+b+c<0;=,所以2a=3b,x=-1時,a-b+c>0,所以2a-2b+2c>0,所以得到b+2c>0;根據(jù)圖象-2b>0,c>0,a-b+c>0,b+2c>0,這幾個不等式相加即可得到④正確.

解:①∵=<0,∴ab>0,∴該結(jié)論正確;

②∵x=1時,y<0,∴a+b+c<0正確,∴該結(jié)論正確;

=,∴2a=3b;

x=-1時,y>0,∴a-b+c>0;

∴2a-2b+2c>0,3b-2b+2c>0;

b+2c>0,∴該結(jié)論錯誤;

④由圖象知a<0,ab>0;

b<0;

∴-2b>0(1)

圖象交y軸于正半軸,∴c>0(2);

a-b+c>0(3),b+2c>0(4);

∴(1)+(2)+(3)+(4)得,a-2b+4c>0,∴該結(jié)論正確. 

所以正確結(jié)論的個數(shù)為3.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)如圖,熱氣球的探測器顯示,從熱氣球A處看一棟高樓頂部B的仰角為30°,看這棟高樓底部C的俯角為65°,熱氣球與高樓的水平距離AD120m.求這棟高樓的高度.(結(jié)果用含非特殊角的三角函數(shù)及根式表示即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一張長方形紙片ABCD沿對角線BD對折,使得點C落在點F處,DFABE,AD=8AB=16.

1)求證:DE=BE;

2)求SBEF;

3)若MN分別為線段CD、DB上的動點,直接寫出(NC+NM)的最小值___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的周長為36,對角線AC、BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為(  )

A. 15 B. 18 C. 21 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王是新星廠的一名工人,請你閱讀下列信息:

信息一:工人工作時間:每天上午800—1200,下午1400—1800,每月工作25天;

信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時間的關(guān)系見下表:

生產(chǎn)甲種產(chǎn)品數(shù)()

生產(chǎn)乙種產(chǎn)品數(shù)()

所用時間(分鐘)

10

10

350

30

20

850

信息三:按件計酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元;

信息四:該廠工人每月收入由底薪和計酬工資兩部分構(gòu)成,小王每月的底薪為1900元.請根據(jù)以上信息,解答下列問題:

(1)小王每生產(chǎn)一件甲種產(chǎn)品和一件乙種產(chǎn)品分別需要多少分鐘;

(2)20181月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,給正五邊形的頂點依次編號 12345,若從某一頂點開始,沿正五邊形的邊順時針行走,頂點編號數(shù)字是幾就走幾個邊長,則稱 這種走法為一次移位,如:小宇在編號為 3 的頂點上時,那么他應(yīng)該走 3 個邊長,即 3-4-5-1 為第一次移位,這時他到達(dá)編號為 1 的頂點;然后從 1-2 為第二次移位.若小宇從編號為 2 的頂點開始,第 14 次移位后,則他所處頂點的編號為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx2+mx+n的圖象經(jīng)過點P(﹣31),對稱軸是直線x=﹣1

1)求mn的值;

2x取什么值時,yx的增大而減?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,有一座拋物線形拱橋,橋下面在正常水位時,AB寬20 m,水位上升到警戒線CD時,CD到拱橋頂E的距離僅為1 m,這時水面寬度為10 m.

(1)在如圖所示的坐標(biāo)系中求拋物線的解析式;

(2)若洪水到來時,水位以每小時0.3 m的速度上升,從正常水位開始,持續(xù)多少小時到達(dá)警戒線?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意,解答問題:

(1)如圖1,已知直線y=2x+4x軸、y軸分別交于A、B兩點,求線段AB的長.

(2)如圖2,類比(1)的解題過程,請你通過構(gòu)造直角三角形的方法,求出點M(3,4)與點N(﹣2,﹣1)之間的距離.

(3)在(2)的基礎(chǔ)上,若有一點Dx軸上運動,當(dāng)滿足DM=DN時,請求出此時點D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案