如圖,已知二次函數(shù)y=ax2-4x+c的圖象經(jīng)過點A和點B.
(1)求該二次函數(shù)的表達式;
(2)寫出該拋物線的對稱軸及頂點坐標;
(3)過點B作BC垂直于x軸于點C,求△AOC的面積?
(1)把A(-1,-1)和B(3,-9)代入y=ax2-4x+c得
a+4+c=-1
9a-12+c=-9
,
解得
a=1
c=-6

所以該二次函數(shù)的表達式為y=x2-4x-6;

(2)y=x2-4x-6
=(x-2)2-10,
所以該拋物線的對稱軸為直線x=2,頂點坐標為(2,-10);

(3)如圖,S△AOC=
1
2
×3×1=
3
2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c的圖象的一部分如圖所示.已知它的頂點M在第二象限,且經(jīng)過點A(1,0)和點B(0,1).
(1)試求a,b所滿足的關系式;
(2)設此二次函數(shù)的圖象與x軸的另一個交點為C,當△AMC的面積為△ABC面積的
5
4
倍時,求a的值;
(3)是否存在實數(shù)a,使得△ABC為直角三角形?若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是平行四邊形,AB=3,AD=
5
,高DE=2,建立如圖所示的平面直角坐標系,其中點A與坐標原點重合,CB的延長線與y軸交于點F,且F(0,-6).
(1)求點D的坐標;
(2)求經(jīng)過點B、D、F的拋物線的解析式;
(3)判斷平行四邊形ABCD的對角線交點G是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

要修建一個圓形噴水池,在池中心豎直安裝一根帶有噴水頭的水管.噴出的水所形成的水流的形狀是拋物線,如果要求水流的最高點到水管的水平距離為1m,距離地面的高度為3m,水流落地處到水管的水平距離是3m,求這根帶有噴水頭的水管在地面以上的高度?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

Rt△ABC的三個頂點A,B,C均在拋物線y=x2上,并且斜邊AB平行于x軸.若斜邊上的高為h,則( 。
A.h<1B.h=1C.1<h<2D.h>2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,小明把一張長為20cm,寬為10cm的矩形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子.設剪去的正方形邊長為x(cm),折成的長方體盒子的側(cè)面積為y(cm2),底面積為S(cm2).
(1)求S與x之間的函數(shù)關系式,并求S=44(cm2)時x的值;(結(jié)果可保留根式)
(2)求y與x之間的函數(shù)關系式;在x的變化過程中,y會不會有最大值?x取何值時取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于50%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)的關系符合一次函數(shù)y=-x+140.
(1)直接寫出銷售單價x的取值范圍.
(2)若銷售該服裝獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;銷售單價為多少元時,可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,鉛球的出手點C距地面1米,出手后的運動路線是拋物線,出手后4秒鐘達到最大高度3米,則鉛球運行路線的解析式為( 。
A.h=-
3
16
t2
B.y=-
3
16
t2+t
C.h=-
1
8
t2+t+1
D.h=-
1
3
t2+2t+1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,橋拱是拋物線形,其函數(shù)解析式是y=-
1
4
x2,當水位線在AB位置時,水面寬為12米,這時水面離橋頂?shù)母叨萮是______米.

查看答案和解析>>

同步練習冊答案