【題目】端午節(jié)放假期間,小明和小華準備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山民居(記為C)、李莊古鎮(zhèn)(記為D)的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點都被選中的可能性相同.
(1)小明選擇去蜀南竹海旅游的概率為 .
(2)用樹狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.
【答案】
(1)
(2)畫樹狀圖分析如下:
兩人選擇的方案共有16種等可能的結(jié)果,其中選擇同種方案有1種,
所以小明和小華都選擇去興文石海旅游的概率= .
【解析】解:(1)∵小明準備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山民居(記為C)、李莊古鎮(zhèn)(記為D)的一個景點去游玩, ∴小明選擇去蜀南竹海旅游的概率= ,
所以答案是: ;
【考點精析】根據(jù)題目的已知條件,利用列表法與樹狀圖法和概率公式的相關(guān)知識可以得到問題的答案,需要掌握當一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率;一般地,如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進價和售價如下表所示:
A | B | |
進價(萬元/套) | 1.5 | 1.2 |
售價(萬元/套) | 1.65 | 1.4 |
該商場計劃購進兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元。
(毛利潤=(售價 - 進價)×銷售量)
(1)該商場計劃購進A,B兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少A種設(shè)備的購進數(shù)量,增加B種設(shè)備的購進數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍。若用于購進這兩種教學(xué)設(shè)備的總資金不超過69萬元,問A種設(shè)備購進數(shù)量至多減少多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圖①中的正方形中剪去一個邊長為2a+b的正方形,將剩余的部分按圖②的方式拼成一個長方形.
(1)求剪去正方形的面積;
(2)求拼成的長方形的長、寬以及它的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值:
(1)(x+y)(x-y)-x(x+y)+2xy,其中x=(3-π)0,y=()-1;
(2)(2a+b)2-(2a-b)(a+b)-2(a-2b)(a+2b),其中a=,b=-2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=12cm,點C是線段AB上的一點,BC=2AC.動點P從點A出發(fā),以3cm/s的速度向右運動,到達點B后立即返回,以3cm/s的速度向左運動;動點Q從點C出發(fā),以1cm/s的速度向右運動.設(shè)它們同時出發(fā),運動時間為ts.當點P與點Q第二次重合時,P,Q兩點停止運動.
(1)AC= cm,BC= cm;
(2)當t為何值時,AP=PQ;
(3)當t為何值時,P與Q第一次相遇;
(4)當t為何值時,PQ=1cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點0,∠AOD=20°,∠DOF:∠FOB=1:7,射線OE平分∠BOF.
(1)求∠EOB的度數(shù);
(2)射線OE與直線CD有什么位置關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為8,在各邊上順次截取AE=BF=CG=DH=5,則四邊形EFGH的面積是( )
A.30
B.34
C.36
D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲沿周長為300米的環(huán)形跑道按逆時針方向跑步,速度為a米/秒,與此同時在甲后面100米的乙也沿該環(huán)形跑道按逆時針方向跑步,速度為3米/秒.
(1)若a=1,求甲、乙兩人第一次相遇所用的時間;
(2)若a>3,甲、乙兩人第一次相遇所用的時間為80秒,試求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,求證:∠ACD=∠B;
(2)如圖②,在Rt△ABC中,∠C=90°,D、E分別在AC,AB上,且∠ADE=∠B,判斷△ADE的形狀?并說明理由?
(3)如圖③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,點C,B,E在同一直線上,若AB⊥BD,AB=BD,則CE與AC,DE有什么等量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com