【題目】如圖,直線L: 與x軸、y軸分別交于A、B兩點,在y軸上有一點
C(0,4),動點M從A點以每秒1個單位的速度沿x軸向左移動。
(1)求A、B兩點的坐標;
(2)求△COM的面積S與M的移動時間t之間的函數(shù)關(guān)系式;
(3)當t為何值時△COM≌△AOB,并求此時M點的坐標。
【答案】
(1)解: 與x軸、y軸分別交于A、B兩點
令y=0時,x=4,
∴A(4,0)
令x=0時,y=2
∴B(0,2)
(2)解:∵C(0,4),A(4,0),
∴OC=OA=4,
當0t4時,OM=OA-AM=4-t,
∴S△COM=×4×(4-t)=8-2t,
當04時,OM=AM-OA=t-4,
∴S△COM=×4×(t-4)=2t-8,
(3)解:分為兩種情況:
①當M在OA上時,OB=OM=2,△COM≌△AOB,
∴AM=OA-OM=4-2=2,
∴動點M從A點以每秒1個單位的速度沿x軸向左移動2個單位所需要的時間是2秒鐘,
∴M(2,0);
②當M在OA延長線上時,OB=OM=2,
∴M(-2,0),
此時需要的時間t=【4-(-2)】÷1=6秒,
∴M點坐標為M(2,0)或M(-2,0).
【解析】(1)由直線L的函數(shù)解析式,令y=0求A點坐標,x=0求B點坐標;
(2)由面積公式S=×|OM|×|OC|,求出S與t之間的函數(shù)關(guān)系式;
(3)若△COM≌△AOB,OM=OA,則t時間內(nèi)移動了AM,可算出t值,并得到M坐標.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC,AD,AB于點E,O,F(xiàn),連接OC,OB,則圖中全等的三角形有( )
A.1對
B.2對
C.3對
D.4對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的頂點分別為A(-2,3),B(-3,2),C(-1,1)
A2B2C2
(1)畫出△ABC關(guān)于y軸對稱的△ ;
(2)請在x軸上確定一點D,使點D到B、C的距離相等(要求用直尺和圓規(guī)作圖,并保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l1:y=x+3與x軸交于點A,與y軸交于點B,與直線l2:y=﹣ x交于點P.直線l3:y=﹣ x+4與x軸交于點C,與y軸交于點D,與直線l1交于點Q,與直線l2交于點R.
(1)點A的坐標是 , 點B的坐標是 , 點P的坐標是;
(2)將△POB沿y軸折疊后,點P的對應(yīng)點為P′,試判斷點P′是否在直線l3上,并說明理由;
(3)求△PQR的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個頂點,與y軸相交于(0, ),點A坐標為(-1,2),點B是點A關(guān)于y軸的對稱點,點C在x軸的正半軸上.
(1)求該拋物線的函數(shù)解析式;
(2)點F為線段AC上一動點,過點F作FE⊥x軸,FG⊥y軸,垂足分別為點E,G,當四邊形OEFG為正方形時,求出點F的坐標;
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當點E和點C重合時停止運動,設(shè)平移的距離為t,正方形的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市自來水公司為鼓勵居民節(jié)約用水,采取月用水量分段收費方法.若某戶居民應(yīng)交水費y(元)與用水量x(方)的函數(shù)關(guān)系如圖所示.
(1)分別求出當0≤x≤15和x>15時,y與x的函數(shù)關(guān)系式.
(2)若某用戶該月用水21方,則應(yīng)交水費多少元?
(3)若小明家每月水費不少于79.5元,則小明家每月用水量不少于多少方?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com