【題目】如圖,在平面直角坐標系中,拋物線x軸交于A、B兩點,與y軸交于C點,B點與C點是直線yx3x軸、y軸的交點.D為線段AB上一點.

1)求拋物線的解析式及A點坐標.

2)若點D在線段OB上,過D點作x軸的垂線與拋物線交于點E,求出點E到直線BC的距離的最大值.

3D為線段AB上一點,連接CD,作點B關于CD的對稱點B,連接AB、BD

當點B落坐標軸上時,求點D的坐標.

在點D的運動過程中,ABD的內角能否等于45°,若能,求此時點B的坐標;若不能,請說明理由.

【答案】1A(﹣2,0);(2EBC的最大距離為;(3D10,0);D23,0);B坐標為(0,3)或(-3)或(,)或(﹣).

【解析】

1)求出B,C兩點的坐標,代入拋物線解析式即可得出答案;

2)設E點橫坐標為m,則Fm,m3),過點EEHBC于點HEFyFyE,利用二次函數(shù)的性質可求出E到直線BC的距離的最大值;

3)①點B′在以C為圓心,CB為半徑的圓C上.所以滿足條件的B′有兩個,分別位于y軸、x軸,結合對稱的性質解答即可;

②分不同的情況進行討論:

(Ⅰ)當點B′位于y軸上,易得點B′的坐標;

(Ⅱ)如圖3,連接CB′,構造菱形DB′CB,根據(jù)菱形的性質求得B′3,3);

(Ⅲ)∠B′AD45°,如圖4,連接CB′,過點B′分別作坐標軸的垂線,垂足為EF,在直角CFB′中,由勾股定理知m2+(5m2=(32,解出m即可;

(Ⅳ)如圖5,∠AB′D45°,連接CB’,過點B′y軸的垂線,垂足為點F,由軸對稱性質可得當∠AB′D45°時,點A在線段CB′上,結合勾股定理求得m的值,進而求得符合條件的點B′的坐標.

1)∵B點與C點是直線yx3x軸、y軸的交點.

B3,0),C0,﹣3),

,解得:,

∴拋物線的解析式為,

y0,則,

解得x1=﹣2,x23,

A(﹣2,0);

2)設E點到直線BC的距離為d,E點橫坐標為m,Fmm3),

B30),C0,﹣3),

∴∠OBC45°,

如圖1,過點EEHBC于點H,

EFH為等腰直角三角形,

EH

EFyFyEm3(),

0≤m≤3),

,

時,EF的最大值為

dEF

EBC的最大距離為;

3)①點B′在以C為圓心,CB為半徑的圓C上;

(Ⅰ)當B′點落在x軸上時,D10,0);

(Ⅱ)當B′點落在y軸上時,如圖2,CB′CB3,

∵∠OB′D45°

ODOB’33,

;

②分別畫出圖形進行討論求解:

(Ⅰ)∠B′DA45°時,如圖2,OB′33B′0,33

(Ⅱ)如圖3,連接CB′,∠B′DA=∠CBD45°,

DB′BC,可得四邊形DB′CB是菱形,

B′(﹣3,﹣3).

(Ⅲ)∠B′AD45°,如圖4,連接CB′,過點B′分別作坐標軸的垂線,垂足為EF,

設線段FB’的長為mB′EAE2m,可得CF5m,

在直角三角形CFB’中,m2+5m2=(32,

解得m,

B′),

(Ⅳ)如圖5,∠AB′D45°,連接CB’,過點B′y軸的垂線,垂足為點F,

由軸對稱性質可得,∠CB′D=∠CBD45°,所以當∠AB′D45°時,點A在線段CB′上,

設線段FB′的長為2m,FC3m,(2m2+3m2

解得:m,B′,

綜合以上可得B′坐標為(0,)或或()或

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點E,交DC的延長線于點F,取EF的中點G,連接CGBGBD,DG,下列結論:

①BE=CD;

②∠DGF=135°

③∠ABG+∠ADG=180°;

,則

其中正確的結論是 .(填寫所有正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC中,D在射線BA上,以CD為一邊,向右上方作等邊△EDC.若BC、CD的長為方程x215x+7m0的兩根,當m取符合題意的最大整數(shù)時,則不同位置的D點共有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠設計了一款成本為20元∕件的公益用品投放市場進行試銷.經過調查,得到如下數(shù)據(jù):

銷售單價x(元∕件)

30

40

50

60

每天銷售量y(件)

500

400

300

200

1)認真分析上表中的數(shù)據(jù),用你所學過的函數(shù)知識確定一個滿足這些數(shù)據(jù)的yx的函數(shù)關系,并求出函數(shù)關系式.

2)設該廠試銷該公益品每天獲得的利潤為w元,當銷售單價x定為多少時,w有最大值?最大利潤是多少?

3)當?shù)孛裾块T規(guī)定,若該廠銷售此公益品單價不低于成本價且不超過46元/件時,該廠每銷售一件此公益品,國家就補貼該廠a元利潤(a4)。設日銷售利潤為m元,公司通過銷售記錄發(fā)現(xiàn),m始終隨銷售單價x的增大而增大,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列條件,求二次函數(shù)的解析式.

1)圖象經過(01),(1,﹣2),(2,3)三點;

2)圖象的頂點(2,3),且經過點(3,1);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx過點B(1,﹣3),對稱軸是直線x=2,且拋物線與x軸的正半軸交于點A.

(1)求拋物線的解析式,并根據(jù)圖象直接寫出當y≤0時,自變量x的取值范圖;

(2)在第二象限內的拋物線上有一點P,當PABA時,求PAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,切點分別是A、B,直線EF也是⊙O的切線,切點為Q,交PA、PB于點E、F,已知PA=12cm,P=40°

(1)求△PEF的周長.

(2)求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的方程有兩個實數(shù)根.

1)求的取值范圍;

2)若,求的值;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:平行四邊形,對角線P為射線BC上一點,,(點M與點B分別在直線AP的兩側),且聯(lián)結MD.

1)當點M內時,如圖一,設關于的函數(shù)解析式.

2)請在圖二中畫出符合題意得示意圖,并探究:圖中是否存在與相似的三角形?若存在,請寫出證明過程,若不存在,請說明理由

3)當為等腰三角形時,求的長.

查看答案和解析>>

同步練習冊答案