【題目】已知二次函數y=a(x﹣m)2﹣a(x﹣m)(a,m為常數,且a≠0).
(1)求證:不論a與m為何值,該函數的圖象與x軸總有兩個公共點;
(2)設該函數的圖象與x軸的兩個交點為A(x1 , 0),B(x2 , 0),且x12+x22=25,求m的值;
(3)設該函數的圖象的頂點為C,與x軸交于A,B兩點,且△ABC的面積為1,求a的值.
【答案】
(1)證明:令y=0,a(x﹣m)2﹣a(x﹣m)=0,
△=(﹣a)2﹣4a×0=a2,
∵a≠0,
∴a2>0,
∴不論a與m為何值,該函數的圖象與x軸總有兩個公共點
(2)解:y=0,則a(x﹣m)2﹣a(x﹣m)=a(x﹣m)(x﹣m﹣1)=0,
解得x1=m,x2=m+1,
∵x12+x22=25,
∴m2+(m+1)2=25,
解得m1=﹣4,m2=3.
故m的值為﹣4或3
(3)解:∵x1=m,x2=m+1,
∴AB=(m+1)﹣m=1,
y=a(x﹣m)2﹣a(x﹣m)=a(x﹣m﹣ )2﹣ ,
△ABC的面積= ×1×|﹣ |=1,
解得a=±8.
故a的值是±8
【解析】(1)把(x-m)看作一個整體,令y=0,利用根的判別式進行判斷數的圖象與x軸總有兩個公共點;
(2)令y=0,利用因式分解法解方程求出x1=m,x2=m+1,根據x12+x22=25,代入得到關于m的方程,解方程即可求出m的值;
(3)根據兩點間的距離公式求出AB,再把拋物線轉化為頂點式形式求出頂點坐標,再利用三角形的面積公式列式進行計算即可求出a的值.
【考點精析】根據題目的已知條件,利用根與系數的關系和三角形的面積的相關知識可以得到問題的答案,需要掌握一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數a、b、c而定;兩根之和等于方程的一次項系數除以二次項系數所得的商的相反數;兩根之積等于常數項除以二次項系數所得的商;三角形的面積=1/2×底×高.
科目:初中數學 來源: 題型:
【題目】A,B,C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機地傳給其他兩人中的某一人.
(1)求兩次傳球后,球恰在B手中的概率;
(2)求三次傳球后,球恰在A手中的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠A=20°,沿BE將此三角形對折,又沿BA′再一次對折,點C落在BE上的C′處,此時∠C′DB=74°,則原三角形的∠C的度數為( )
A.27°B.59°C.69°D.79°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把矩形紙片ABCD沿EF折疊,使點B落在邊AD上的點B′處,點A落在點A′處,已知AD=10,CD=4,B′D=2.
(1)求證:B′E=BF;
(2)求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次數學活動中,檢驗兩條紙帶①、②的邊線是否平行,小明和小麗采用兩種不同的方法:小明對紙帶①沿AB折疊,量得∠1=∠2=50°;小麗對紙帶②沿GH折疊,發(fā)現GD與GC重合,HF與HE重合. 則下列判斷正確的是( )
A. 紙帶①的邊線平行,紙帶②的邊線不平行 B. 紙帶①、②的邊線都平行
C. 紙帶①的邊線不平行,紙帶②的邊線平行 D. 紙帶①、②的邊線都不平行
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進園不需購買門票,采摘的草莓超過一定數量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費用為(元),在乙園所需總費用為(元),、與之間的函數關系如圖所示.
(1)甲采摘園的門票是_____元,兩個采摘園優(yōu)惠前的草莓單價是每千克____元;
(2)當時,求與的函數表達式;
(3)游客在“春節(jié)期間”采摘多少千克草莓時,甲、乙兩家采摘園的總費用相同.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知A、B在數軸上分別表示a,b.
(1)對照數軸填寫下表:
a | 6 | -6 | -6 | -6 | 2 | -1.5 |
b | 4 | 0 | 4 | -4 | -10 | -1.5 |
A、B兩點的距離 |
(2)若A、B兩點間的距離記為d,試問:d和a,b有何數量關系?
(3)在數軸上找出所有符合條件的整數點P,使它到5和-5的距離之和為10,并求所有這些整數的和;
(4)若點C表示的數為x,當點C在什么位置時,取得的值最小? 最小值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角三角形ABC的直角邊AB=6,BC=8,將直角三角形ABC沿邊BC的方向平移到三角形DEF的位置,DE交AC于點G,BE=2,三角形CEG的面積為13.5,下列結論:
①三角形ABC平移的距離是4; ②EG=4.5;
③AD∥CF; ④四邊形ADFC的面積為6.
其中正確的結論是( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數 的圖象如圖所示,有以下結論:① ;② ;③ ;④ ;⑤ 其中所有正確結論的序號是( )
A.①②
B.①③④
C.①②③⑤
D.①②③④⑤
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com