【題目】已知拋物線y=x2+bx+c(b,c 為常數(shù))與x軸交于點(diǎn)A(﹣1,0),點(diǎn) B(3,0),與y軸交于點(diǎn)C,其頂點(diǎn)為D,點(diǎn)P(不與點(diǎn) A,B 重合)為拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)直線PA,PB分別于拋物線的對(duì)稱軸交于M,N 兩點(diǎn),設(shè)M,N 兩點(diǎn)的縱坐標(biāo)分別為y1 , y2 , 求y1+y2的值;
(3)連接BC,BD,當(dāng)∠PAB=∠CBD時(shí),求點(diǎn)P的坐標(biāo).

【答案】
(1)解:將A(﹣1,0),B(3,0)代入得:

解得:b=﹣2,c=﹣3.

拋物線的解析式為y=x2﹣2x﹣3


(2)解:由x=﹣ 得;拋物線的對(duì)稱軸為x=1.

設(shè)點(diǎn)P的坐標(biāo)為(a,a2﹣2a﹣3).

設(shè)直線PA的解析式為y=kx+b.

將點(diǎn)P和點(diǎn)A的坐標(biāo)代入得: ,解得:k=a﹣3,b=a﹣3.

∴直線PA的解析式為y=(a﹣3)x+a﹣3.

將x=1代入得:y1=2a﹣6.

設(shè)直線PB的解析式為y=k1x+b1

將點(diǎn)P和點(diǎn)B的坐標(biāo)代入得: ,解得:k=a+1,b=﹣3a﹣3.

∴直線PB的解析式為y=(a+1)x﹣3a﹣3.

將x=1代入得:y2=﹣2a﹣2.

∴y1+y2=﹣8.


(3)解:如圖所示:

∵y=x2﹣2x﹣3=(x﹣1)2﹣4,

∴拋物線的頂點(diǎn)坐標(biāo)為(1,﹣4).

∵將x=0代入拋物線的解析式得;y=﹣3,

∴C(0,﹣3).

由兩點(diǎn)間的距離公式可知:BC=3 ,DC= ,BD=2

∵BC2+DC2=BD2,

∴△BCD為直角三角形.

∴tan∠CBD= =

設(shè)點(diǎn)P的坐標(biāo)為(a,a2﹣2a﹣3).

∵∠PAB=∠CBD,

=

整理得:a﹣3=

解得:a=3 或a=2

∴當(dāng)a=2 時(shí),a+1= ,則a2﹣2a﹣3= =﹣

∴點(diǎn)P的坐標(biāo)為( ,﹣ ).

當(dāng)a= 時(shí),a+1= ,則a2﹣2a﹣3= =

∴點(diǎn)P′的坐標(biāo)為( ).

綜上所述,點(diǎn)P的坐標(biāo)為( ,﹣ )或( ,


【解析】(1)用待定系數(shù)法,把A(﹣1,0),B(3,0)代入拋物線,求出拋物線的解析式;(2)由拋物線的對(duì)稱軸為x=1,得到直線PA的解析式和直線PB的解析式,求出y1+y2的值;(3)由拋物線的解析式得到拋物線的頂點(diǎn)坐標(biāo),求出C點(diǎn)坐標(biāo),根據(jù)兩點(diǎn)間的距離公式求出BC、DC、BD的值,根據(jù)勾股定理的逆定理得到△BCD為直角三角形;根據(jù)三角函數(shù)值求出點(diǎn)P的坐標(biāo);此題是綜合題,難度較大,計(jì)算和解方程時(shí)需認(rèn)真仔細(xì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,E、F是對(duì)角線BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的一銳角α45°<α90°)的正弦和余弦分別是方程(m+5x2﹣(2m5x+120的兩根,求:

1m的值;

2α的正弦值和余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了從甲、乙兩名選手中選拔出一個(gè)人參加射擊比賽,現(xiàn)對(duì)他們進(jìn)行一次測(cè)驗(yàn),兩個(gè)人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計(jì)圖表.

甲、乙射擊成績統(tǒng)計(jì)表

平均數(shù)(環(huán))

中位數(shù)(環(huán))

方差

命中10環(huán)的次數(shù)

7

0

1

甲、乙射擊成績折線統(tǒng)計(jì)圖

1)請(qǐng)補(bǔ)全上述圖表(請(qǐng)直接在表中填空和補(bǔ)全折線圖);

2)如果規(guī)定成績較穩(wěn)定者勝出,你認(rèn)為誰應(yīng)勝出?說明你的理由;

3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評(píng)判規(guī)則?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)

如圖,點(diǎn)E,F在BC上,BE=CF,A=D,B=C,AF與DE交于點(diǎn)O.

(1)求證:AB=DC;

(2)試判斷OEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,G是線段AB上一點(diǎn),ACDG相交于點(diǎn)E

1)請(qǐng)先作出∠ABC的平分線BF,交AC于點(diǎn)F;(尺規(guī)作圖,保留作圖痕跡,不寫作法與證明)

2)然后證明當(dāng):ADBC,ADBC,∠ABC2ADG時(shí),DEBF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,⊙O的直徑AB與弦AC的夾角∠A=30°,AC=CP.

(1)求證:CP是⊙O的切線;
(2)若PC=6,AB=4 ,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將紙片折疊,折疊后的三個(gè)三角形可拼合形成一個(gè)矩形,類似地,對(duì)多邊形進(jìn)行折疊,若翻折后的圖形恰能拼合成一個(gè)無縫隙、無重疊的矩形,這樣的矩形稱為疊合矩形.

1)將紙片按圖2的方式折疊成一個(gè)疊合矩形,則操作形成的折痕分別是線段_______,__________;___________

2)將紙片按圖3的方式折疊成一個(gè)疊合矩形,若,,求的長;

3)如圖4,四邊形紙片滿足,,,,小明把該紙片折疊,得到疊合正方形,請(qǐng)你幫助畫出一種疊合正方形的示意圖,并求出、的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E為BC的中點(diǎn),AE與對(duì)角線BD交于點(diǎn)F.

(1)求證:DF=2BF;
(2)當(dāng)∠AFB=90°且tan∠ABD= 時(shí),若CD= ,求AD長.

查看答案和解析>>

同步練習(xí)冊(cè)答案