將直角邊長為6的等腰Rt△AOC放在如圖所示的平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點C、A分別在x、y軸的正半軸上,一條拋物線經(jīng)過點A、C及點B(-3,0).
(1)求該拋物線的解析式;
(2)若點P是線段BC上一動點,過點P作AB的平行線交AC于點E,連接AP,當(dāng)△APE的面積最大時,求點P的坐標(biāo);
(3)在第一象限內(nèi)的該拋物線上是否存在點G,使△AGC的面積與(2)中△APE的最大面積相等?若存在,請求出點G的坐標(biāo);若不存在,請說明理由.

【答案】分析:(1)已知OA、OC的長,可得A、C的坐標(biāo),即可用待定系數(shù)法求出拋物線的解析式.
(2)設(shè)出點P的橫坐標(biāo),表示出CP的長,由于PE∥AB,可利用相似三角形△CPE∽△CBA,求出△APE的面積表達(dá)式,進(jìn)而可將面積問題轉(zhuǎn)換為二次函數(shù)的最值問題,根據(jù)函數(shù)的性質(zhì)即可得到△APE的最大面積及對應(yīng)的P點坐標(biāo).
(3)由于△AGC的面積無法直接求出,可用割補(bǔ)法求解,過G作GH⊥x軸于H,設(shè)出G點坐標(biāo),表示出△HGC、梯形AOHG的面積,它們的面積和減去△AOC的面積即可得到△AGC的面積表達(dá)式,然后將(2)題所得△APE的面積最大值代入上式中,聯(lián)立拋物線的解析式即可得到點G的坐標(biāo).
解答:解:(1)如圖,
∵拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(0,6),
∴c=6.(1分)
∵拋物線的圖象又經(jīng)過點(-3,0)和(6,0),
,(1分)
解之得,(1分)
故此拋物線的解析式為:y=-x2+x+6.(1分)

(2)設(shè)點P的坐標(biāo)為(m,0),
則PC=6-m,S△ABC=BC•AO=×9×6=27;(1分)
∵PE∥AB,
∴△CEP∽△CAB;(1分)

=(2,
∴S△CEP=(6-m)2,(1分)
∵S△APC=PC•AO=(6-m)×6=3(6-m),
∴S△APE=S△APC-S△CEP=3(6-m)-(6-m)2=-(m-2+;
當(dāng)m=時,S△APE有最大面積為;
此時,點P的坐標(biāo)為(,0).(1分)

(3)如圖,過G作GH⊥BC于點H,設(shè)點G的坐標(biāo)為G(a,b),(1分)
連接AG、GC,
∵S梯形AOHG=a(b+6),
S△CHG=(6-a)b,
∴S四邊形AOCG=a(b+6)+(6-a)b=3(a+b).(1分)
∵S△AGC=S四邊形AOCG-S△AOC,
=3(a+b)-18,(1分)
∵點G(a,b)在拋物線y=-x2+x+6的圖象上,
∴b=-a2+a+6,
=3(a-a2+a+6)-18,
化簡,得4a2-24a+27=0,
解之得a1=,a2=;
故點G的坐標(biāo)為(,)或().(1分)
點評:此題涉及到二次函數(shù)解析式的確定、圖形面積的求法等知識,注意面積問題與二次函數(shù)最值問題之間的聯(lián)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)將直角邊長為5cm的等腰直角△ABC繞點A逆時針旋轉(zhuǎn)15°后,得到△AB′C′,則圖中陰影部分的面積是
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將直角邊長為6的等腰Rt△AOC放在如圖所示的平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點C、A分別在x、y軸的正半軸上,一條拋物線經(jīng)過點A、C及點B(-3,0).
(1)求該拋物線的解析式;
(2)若點P是線段BC上一動點,過點P作AB的平行線交AC于點E,連接AP,當(dāng)△APE的面積最大時,求點P的坐標(biāo);
(3)在第一象限內(nèi)的該拋物線上是否存在點G,使△AGC的面積與(2)中△APE的最大面積相等?若存在,請求出點G的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將直角邊長為6的等腰Rt△AOC放在如圖所示的平面直角坐標(biāo)系中,點O為坐標(biāo)原點精英家教網(wǎng),點C、A分別在x、y軸的正半軸上,一條拋物線經(jīng)過點A、C及點B(-3,0).
(1)求該拋物線的解析式;
(2)若點P是線段BC上一動點,過點P作AB的平行線交AC于點E,連接AP,設(shè)點P的橫坐標(biāo)為x,試用含x的代數(shù)式表示△APE的面積S;
(3)在(2)的條件下,點G為第一象限內(nèi)的該拋物線上的一個動點,對于S的一個確定的值,始終存在點G,滿足△AGC的面積與(2)中△APE的面積相等,求符合題意的點G的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)將直角邊長為5cm的等腰直角△ABC繞點A逆時針旋轉(zhuǎn)15°后,得到△AB′C′,則圖中陰影部分的面積是( 。ヽm2
A、12.5
B、
25
3
6
C、
25
3
3
D、不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將直角邊長為3cm的等腰Rt△ABC繞點A逆時針旋轉(zhuǎn)15°得到△ADE,ED交AB于點F,則△AEF的面積為
3
3
2
3
3
2
cm2

查看答案和解析>>

同步練習(xí)冊答案