【題目】閱讀以下材料:對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學家納皮爾,納皮爾發(fā)明對數(shù)是在指數(shù)書寫方式之前,直到18世紀瑞士數(shù)學家歐拉才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.
對數(shù)的定義:一般地,若ax=N(a>0,a≠1),那么x叫做以a為底N的對數(shù),記作:記作:x=logaN.比如指數(shù)式24=16可以轉(zhuǎn)化為4=log216,對數(shù)式2=log525可以轉(zhuǎn)化為52=25.
我們根據(jù)對數(shù)的定義可得到對數(shù)的一個性質(zhì):
loga(MN)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:logaM=m,logaN=n,則M=am,N=an
∴MN=aman=am+n,由對數(shù)的定義得m+n=loga(MN)
又∵m+n=logaM+logaN
∴loga(MN)=logaM+logaN
解決以下問題:
(1)將指數(shù)式53=125轉(zhuǎn)化為對數(shù)式 ;
(2)log24= ,log381= ,log464= .(直接寫出結(jié)果)
(3)證明:證明loga=logaM﹣logaN(a>0,a≠1,M>0,N>0).(寫出證明過程)
(4)拓展運用:計算計算log34+log312﹣log316= .(直接寫出結(jié)果)
【答案】(1)3=log5125;(2)2,4,3;(3)見解析;(4)1.
【解析】
(1)根據(jù)題意可以把指數(shù)式53=125寫成對數(shù)式;
(2)運用對數(shù)的定義進行解答便可;
(3)先設(shè)logaM=m,logaN=n,根據(jù)對數(shù)的定義可表示為指數(shù)式為:M=am,N=an,計算的結(jié)果,同理由所給材料的證明過程可得結(jié)論;
(4)根據(jù)公式:loga(MN)=logaM+logaN以及loga=logaM﹣logaN的逆運用求解即可得到答案;
解:(1)∵一般地,若ax=N(a>0,a≠1),那么x叫做以a為底N的對數(shù),記作:記作:x=logaN.
∴3=log5125,
故答案為:3=log5125;
(2)∵22=4,34=81,43=64,
∴log24=2,log381=4,log464=3,
故答案為:2;4;3;
(3)設(shè)logaM=m,logaN=n,則M=am,N=an,
∴==am﹣n,
∴由對數(shù)的定義得m﹣n=loga,
又∵m﹣n=logaM﹣logaN,
∴loga=logaM﹣logaN;
(4)根據(jù)公式:loga(MN)=logaM+logaN以及loga=logaM﹣logaN得到:
log34+log312﹣log316=log3(4×12÷16)=log33=1.
故答案為:1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某小區(qū)有一塊長為30 m,寬為24 m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對稱軸x=1.如圖所示,有下列5個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).其中所有結(jié)論正確的是______(填寫番號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀以下材料:對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學家納皮爾(J.Napier,1550年-1617年),納皮爾發(fā)明對數(shù)是在指數(shù)概念建立之前,直到18世紀瑞士數(shù)學家歐拉(Euler,1707年-1783年)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.對數(shù)的定義:一般地,若,則叫做以為底的對數(shù),記作.比如指數(shù)式可以轉(zhuǎn)化為,對數(shù)式可以轉(zhuǎn)化為.我們根據(jù)對數(shù)的定義可得到對數(shù)的一個性質(zhì):.理由如下:設(shè),,所以,,所以,由對數(shù)的定義得,又因為,所以.解決以下問題:
(1)將指數(shù)轉(zhuǎn)化為對數(shù)式: .
(2)仿照上面的材料,試證明:
(3)拓展運用:計算 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新交通法規(guī)實施以來,為了解某社區(qū)居民遵守交通法規(guī)情況,小明隨機選取部分居民就“行人闖紅燈現(xiàn)象”進行問卷調(diào)查,調(diào)查分為“A:從不闖紅燈;B:偶爾闖紅燈;C:經(jīng)常闖紅燈;D:其他”四種情況,并根據(jù)調(diào)查結(jié)果繪制出部分條形統(tǒng)計圖(如圖1)和部分扇形統(tǒng)計圖(如圖2).請根據(jù)圖中信息,解答下列問題:
(1)本次調(diào)查共選取 名居民;
(2)求出扇形統(tǒng)計圖中“C”所對扇形的圓心角是 度,并將條形統(tǒng)計圖補充完整;
(3)如果該社區(qū)共有居民2600人,估計有多少人從不闖紅燈?(請計算說明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的頂點A、C在平面直角坐標系的坐標軸上,AB=4,CB=3,點D與點A關(guān)于y軸對稱,點E、F分別是線段DA、AC上的動點(點E不與A、D重合),且∠CEF=∠ACB,若△EFC為等腰三角形,則點E的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c經(jīng)過點A(5,)、點B(9,﹣10),與y軸交于點C,點P是直線AC上方拋物線上的一個動點;
(1)求拋物線對應(yīng)的函數(shù)解析式;
(2)過點P且與y軸平行的直線l與直線BC交于點E,當四邊形AECP的面積最大時,求點P的坐標;
(3)當∠PCB=90°時,作∠PCB的角平分線,交拋物線于點F.
①求點P和點F的坐標;
②在直線CF上是否存在點Q,使得以F、P、Q為頂點的三角形與△BCF相似,若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊BC上的一動點(不與點B、C重合),連接DE、點C關(guān)于直線DE的對稱點為C′,連接AC′并延長交直線DE于點P,F是AC′的中點,連接DF.
(1)求∠FDP的度數(shù);
(2)連接BP,請用等式表示AP、BP、DP三條線段之間的數(shù)量關(guān)系,并證明;
(3)連接AC,若正方形的邊長為,請直接寫出△ACC′的面積最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB=8,射線BG⊥AB,P為射線BG上一點,以AP為邊作正方形APCD,且點C、D與點B在AP兩側(cè),在線段DP上取一點E,使∠EAP=∠BAP,直線CE與線段AB相交于點F(點F與點A、B不重合).
(1)求證:△AEP≌△CEP;
(2)判斷CF與AB的位置關(guān)系,并說明理由;
(3)求△AEF的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com