【題目】猜想:當(dāng)點(diǎn)E在兩條直線AB,CD之外時(如圖1和2),∠BED,∠B,∠D滿足怎樣的關(guān)系時,有AB∥CD?對猜想進(jìn)行證明.
【答案】(1)當(dāng)∠B=∠BED+∠D時,有AB∥CD.證明見解析;(2)當(dāng)∠B=∠BED+∠D時,有AB∥CD.證明見解析.
【解析】
(1)過點(diǎn)E作EF∥AB,由∠B=∠BED+∠D,結(jié)合題意,得到AB∥CD;
(2)設(shè)BE與CD交于點(diǎn)O.結(jié)合題意推得∠BOD=∠B,從而得到AB∥CD.
(1)當(dāng)∠B=∠BED+∠D時,有AB∥CD.證明如下:
如圖1,過點(diǎn)E作EF∥AB,則∠B+∠FEB=180°,
∵∠B=∠BED+∠D,
∴∠FEB+∠BED+∠D=180°,
∴EF∥CD,
∴AB∥CD;
(2)當(dāng)∠B=∠BED+∠D時,有AB∥CD.證明如下:
如圖2,設(shè)BE與CD交于點(diǎn)O.
∵∠BOD=∠BED+∠D,∠B=∠BED+∠D,
∴∠BOD=∠B,
∴AB∥CD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)四邊形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,點(diǎn)E在CD的延長線上,∠BAC=∠DAE.
(1)求證:△ABC≌△ADE;
(2)求證:CA平分∠BCD;
(3)如圖(2),設(shè)AF是△ABC的BC邊上的高,求證:EC=2AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知,滿足點(diǎn)在軸的負(fù)半軸上,直角頂點(diǎn)在軸上,點(diǎn)在軸上方.
如圖1所示,若點(diǎn)與原點(diǎn)重合,點(diǎn)的坐標(biāo)是,則點(diǎn)的坐標(biāo)是 ;
如圖2所示,若點(diǎn)的坐標(biāo)是,過點(diǎn)作軸于,請求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F是四邊形ABCD對角線AC上的兩點(diǎn),AD∥BC,DF∥BE,AE=CF.
求證:(1)△AFD≌△CEB;
(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形ABCD中,AB<AD,對角線AC,BD相交于點(diǎn)O,動點(diǎn)P由點(diǎn)A出發(fā),沿AB-BC→CD向點(diǎn)D運(yùn)動設(shè)點(diǎn)P的運(yùn)動路程為x,△AOP的面積為y,y與x的函數(shù)關(guān)系圖象如圖②所小示,則AD的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個結(jié)論:
①二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
②拋物線與y軸交點(diǎn)為(0,-3);
③二次函數(shù)y=ax2+bx+c 的圖像對稱軸是x=1;
④本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.
(1)如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;
(2)如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列一組圖形中的個數(shù),其中第1個圖中共有4個點(diǎn),第2個圖中共有10個點(diǎn),第3個圖中共有19個點(diǎn),……,按此規(guī)律第5個圖中共有點(diǎn)的個數(shù)是( )
A. 31 B. 46 C. 51 D. 66
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com