【題目】分類討論,在平面直角坐標系中,已知A(2,3),B(0,2),C(3,0).將三角形ABC的一個頂點平移到坐標原點O處,寫出平移方法和另兩個對應頂點的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在△AFD和△CEB中,點A、E、F、C在同一直線上,AE=CF,∠B=∠D,AD∥BC.
(1)AD與BC相等嗎?請說明理由;
(2)BE與DF平行嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD,OE⊥AB,過點O畫直線MN⊥CD. 若點F是直線MN上任意一點(點O除外),且∠AOC=34°.求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在光明廣場(點O)繪制了市內(nèi)幾所學校相對于廣場的位置簡圖(圖11中1 cm表示5 km).東方紅中學在廣場的正南方向,測得OA=1.7 cm,OB=2 cm,OC=2 cm,OD=1.4 cm,∠AOC=123°18′,∠AOB=68°24′,∠AOD=88°28′,如何確定每個學校的具體位置?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AC上,且AE=CD,BE與AD相交于點P,BQ上AD于點Q.
(1)求證:AD=BE;
(2)求∠PBQ的度數(shù);
(3)若PQ=3,PE=1,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+c與x軸交于A、B兩點,頂點為C,點P在拋物線上,且位于x軸下方.
(1)若P(1,﹣3)、B(4,0),
①求該拋物線的解析式;
②若D是拋物線上一點,滿足∠DPO=∠POB,求點D的坐標;
(2)如圖2,在(1)中的拋物線解析式不變的條件下,已知直線PA、PB與y軸分別交于E、F兩點,點點P運動時,OE+OF是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個由5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無縫隙,其中兩張等腰直角三角形紙片的面積都為S1 , 另兩張直角三角形紙片的面積都為S2 , 中間一張正方形紙片的面積為S3 , 則這個平行四邊形的面積一定可以表示為( )
A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在方格紙中(小正方形的邊長為1),△ABC的三個頂點均為格點,將△ABC沿x軸向左平移5個單位長度,根據(jù)所給的直角坐標系(O是坐標原點),解答下列問題:
(1)畫出平移后的△A′B′C′,并直接寫出點A′、B′、C′的坐標;
(2)求出在整個平移過程中,△ABC掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“五四”期間,小張購進100只兩種型號的文具進行銷售,其進價和售價之間的關系如下表:
型號 | 進價(元/只) | 售價(元/只) |
A型 | 10 | 12 |
B型 | 15 | 23 |
(1)設購進A型文具x只,銷售利潤為w元,求w與x的函數(shù)關系式?
(2)要使銷售文具所獲利潤最大,且所獲利潤不超過進貨價格的40%,請你幫小張設計一個進貨方案,并求出其所獲利潤的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com