如圖所示,一水庫(kù)迎水坡AB的坡度i=1:3,則求坡角α的正弦值sinα=______.
過(guò)A作AC⊥BC于C,

∵AB的坡度i=1:3,
∴tanα=
AC
BC
=
1
3

設(shè)AC=x,BC=3x,
根據(jù)勾股定理可得:AB=
AC2+BC2
=
10
x,
則sinα=
AC
AB
=
x
10
x
=
10
10

故答案為:
10
10
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在菱形ABCD中,AE⊥BC于E,已知EC=1,cosB=
5
13
,則這個(gè)菱形的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:△ABC中,∠C=90°,a=3,∠A=30°,求∠B、b、c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

聰聰放一線長(zhǎng)125米的風(fēng)箏,他的風(fēng)箏線與水平地面構(gòu)成39°角,他的風(fēng)箏高為( 。
A.125•sin39°B.125•cos39°C.125•tan39°D.125•cot39°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,初二•一班數(shù)學(xué)興趣小組為了測(cè)量河兩岸建筑物AB和建筑物CD的水平距離AC,他們首先在A點(diǎn)處測(cè)得建筑物CD的頂部D點(diǎn)的仰角為25°,然后爬到建筑物AB的頂部B處測(cè)得建筑物CD的頂部D點(diǎn)的俯角為15°30′.已知建筑物AB的高度為30米,求兩建筑物的水平距離AC.(精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

廈門(mén)是一臺(tái)風(fēng)多發(fā)的城市,某日,市氣象臺(tái)測(cè)得臺(tái)風(fēng)中心在廈門(mén)的正西方向300km的海面上A處,正以每小時(shí)10
7
km的速度向北偏東60°方向移動(dòng),距臺(tái)風(fēng)中心200km的范圍為受臺(tái)風(fēng)影響的區(qū)域,如圖所示,
(1)廈門(mén)是否受這次臺(tái)風(fēng)影響,為什么?
(2)若廈門(mén)受到這次臺(tái)風(fēng)的影響,則遭受臺(tái)風(fēng)影響的時(shí)間有多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在Rt△ABC中,∠ACB=90°,BC=8
2
,cosA=
1
3
,則斜邊AB上中線CD的長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)如圖1,在△ABC中,∠B、∠C均為銳角,其對(duì)邊分別為b、c,求證:
b
sinB
=
c
sinC
;
(2)在△ABC中,AB=
3
,AC=
2
,∠B=45°,問(wèn)滿足這樣的△ABC有幾個(gè)在圖2中作出來(lái)(不寫(xiě)作法,不述理由)并利用(1)的結(jié)論求出∠ACB的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,四邊形ABCD中∠DAB=60°,∠B=∠D=90°,BC=1,CD=2,則對(duì)角線AC的長(zhǎng)為( 。
A.
21
B.
21
3
C.
2
21
3
D.
5
21
3

查看答案和解析>>

同步練習(xí)冊(cè)答案