【題目】如圖,在中,,,平分,、分別是、上的動(dòng)點(diǎn),當(dāng)最小時(shí),的度數(shù)為( )
A.B.C.D.
【答案】B
【解析】
在AC上截取AE=AN,先證明△AME≌△AMN(SAS),推出ME=MN.當(dāng)B、M、E共線,BE⊥AC時(shí),BM+ME最小,可求出∠NME的度數(shù),從而求出∠BMN的度數(shù).
如圖,在AC上截取AE=AN,
∵∠BAC的平分線交BC于點(diǎn)D,
∴∠EAM=∠NAM,
在△AME與△AMN中,
,
∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME,
當(dāng)B、M、E共線,BE⊥AC時(shí),BM+ME最小,
∴MN⊥AB
∵∠BAC=68°
∴∠NME=360°-∠BAC-∠MEA-∠MNA=360°-68°-90°-90°=112°,
∴∠BMN=180°-112°=68°.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,若點(diǎn)從點(diǎn)出發(fā)以/的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā)以/的速度向點(diǎn)運(yùn)動(dòng),設(shè)、分別從點(diǎn)、同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為.
(1)求、的長(zhǎng)(用含的式子表示).
(2)當(dāng)為何值時(shí),是以為底邊的等腰三角形?
(3)當(dāng)為何值時(shí),//?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰中,,,是邊上的中點(diǎn),點(diǎn),分別是邊,上的動(dòng)點(diǎn),點(diǎn)從頂點(diǎn)沿方向作勻速運(yùn)動(dòng),點(diǎn)從從頂點(diǎn)沿方向同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接,.
(1)求證:.
(2)判斷線段與的位置及數(shù)量關(guān)系,并說(shuō)明理由.
(3)在運(yùn)動(dòng)過(guò)程中,與的面積之和是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于二次函數(shù),有下列說(shuō)法:
①如果當(dāng)x≤1時(shí)隨的增大而減小,則m≥1;
②如果它的圖象與x軸的兩交點(diǎn)的距離是4,則;
③如果將它的圖象向左平移3個(gè)單位后的函數(shù)的最小值是-4,則m=-1;
④如果當(dāng)x=1時(shí)的函數(shù)值與x=2013時(shí)的函數(shù)值相等,則當(dāng)x=2014時(shí)的函數(shù)值為-3.
其中正確的說(shuō)法是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B在直線x=3上,直線x=3與x軸交于點(diǎn)C
(1)求拋物線的解析式;
(2)點(diǎn)P從點(diǎn)A出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿線段AB向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿線段CA向點(diǎn)A運(yùn)動(dòng),點(diǎn)P,Q同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).以PQ為邊作矩形PQNM,使點(diǎn)N在直線x=3上.
①當(dāng)t為何值時(shí),矩形PQNM的面積最?并求出最小面積;
②直接寫(xiě)出當(dāng)t為何值時(shí),恰好有矩形PQNM的頂點(diǎn)落在拋物線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+c與x軸交于A、B兩點(diǎn),頂點(diǎn)為C,點(diǎn)P在拋物線上,且P(1,﹣3),B(4,0)
(1)點(diǎn)A的坐標(biāo)是 ;
(2)求該拋物線的解析式;
(3)直接寫(xiě)出該拋物線的頂點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某藥廠銷售部門根據(jù)市場(chǎng)調(diào)研結(jié)果,對(duì)該廠生產(chǎn)的一種新型原料藥未來(lái)兩年的銷售進(jìn)行預(yù)測(cè),井建立如下模型:設(shè)第t個(gè)月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設(shè)第t個(gè)月銷售該原料藥每噸的毛利潤(rùn)為Q(單位:萬(wàn)元),Q與t之間滿足如下關(guān)系:Q=
(1)當(dāng)8<t≤24時(shí),求P關(guān)于t的函數(shù)解析式;
(2)設(shè)第t個(gè)月銷售該原料藥的月毛利潤(rùn)為w(單位:萬(wàn)元)
①求w關(guān)于t的函數(shù)解析式;
②該藥廠銷售部門分析認(rèn)為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤(rùn)范圍,求此范圍所對(duì)應(yīng)的月銷售量P的最小值和最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com