【題目】如圖,一次函數(shù)ykx+1與反比例函數(shù)y的圖象相交于A2,3),B兩點.

1)求k、m的值和B點坐標(biāo);

2)過點BBCx軸于C,連接AC,將ABC沿x軸向右平移,對應(yīng)得到A'B'C',當(dāng)反比例函數(shù)圖象經(jīng)過A'C'的中點M時,求MAC的面積.

【答案】1m6,k1,點B的坐標(biāo)為(﹣3,﹣2);(2

【解析】

1)將點A分別代入即可求出km的值,再將兩個函數(shù)解析式聯(lián)立成方程組即可求出點B的坐標(biāo);

2)設(shè)ABC向右平移了m個單位,將點點Mm,)代入y=中求出點M的坐標(biāo),過點Ay軸的平行線交CM于點H,利用直線CM求出點H,即可求出△MAC的面積.

解:(1)∵點A2,3)在y的圖象上,

m6,

∴反比例函數(shù)的解析式為:y①,

將點A的坐標(biāo)代入一次函數(shù)表達(dá)式得:32k+1

解得:k1,

故一次函數(shù)表達(dá)式為:yx+1②,

聯(lián)立①②得,解得:

故點B的坐標(biāo)為(﹣3,﹣2);

2)如圖,設(shè)ABC向右平移了m個單位,則點A、C的坐標(biāo)分別為(2+m,3)、(﹣3+m,0),

則點Mm,),

將點M的坐標(biāo)代入①式并解得:m

故點M4,),

過點Ay軸的平行線交CM于點H

設(shè)直線CM的解析式為y=k1x+b,

,解得

∴直線CM的表達(dá)式為:,

當(dāng)x2時,y,故點H2,),

MAC的面積SSAHC+SAHM×AH×xMxC)=3×4+3)=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是矩形,等腰△ODE中,OEDE,點ADx軸的正半軸上,點Cy軸的正半軸上,點B、E在反比例函數(shù)y的圖象上,OA5,OC1,則△ODE的面積為( 。

A.2.5B.5C.7.5D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)李飛與劉亮射擊訓(xùn)練的成績繪制了如圖所示的折線統(tǒng)計圖.

根據(jù)圖所提供的信息,若要推薦一位成績較穩(wěn)定的選手去參賽,應(yīng)推薦(  )

A. 李飛或劉亮 B. 李飛 C. 劉亮 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點延長線上一點,過點的切線,切點是,過點作弦,連接,

1)求證:的切線;

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)某蔬菜經(jīng)銷商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時,每千克批發(fā)價是5元;若超過60千克時,批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.

1)根據(jù)題意,填寫如表:

2)經(jīng)調(diào)查,該蔬菜經(jīng)銷商銷售該種蔬菜的日銷售量y(千克)與零售價x(元/千克)是一次函數(shù)關(guān)系,其圖象如圖,求出yx之間的函數(shù)關(guān)系式;

3)若該蔬菜經(jīng)銷商每日銷售此種蔬菜不低于75千克,且當(dāng)日零售價不變,那么零售價定為多少時,該經(jīng)銷商銷售此種蔬菜的當(dāng)日利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人字折疊梯完全打開后如圖1所示,BC是折疊梯的兩個著地點,D是折疊梯最高級踏板的固定點.圖2是它的示意圖,AB=AC,BD=140cm,∠BAC=40°,求點D離地面的高度DE.(結(jié)果精確到0.1cm;參考數(shù)據(jù)sin70°≈0. 94,cos70°≈0.34,sin20°≈0.34cos20°≈0.94

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B為直線yx上的兩點,過A、B兩點分別作y軸的平行線交雙曲線x0)于點C、D兩點.若BD2AC,則4OC2OD2的值為(

A.5B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線Py1ax223與拋物線Qy2 xt21在同一個坐標(biāo)系中(其中a、t均為常數(shù),且t0),已知拋物線P過點A1,3),過點A作直線lx軸,交拋物線P于點B

1a________,點B的坐標(biāo)是________;

2)當(dāng)拋物線Q經(jīng)過點A時.

①求拋物線Q的解析式;

②設(shè)直線l與拋物線Q的另一交點記作C,求的值;

3)若拋物線Q與線段AB總有唯一的交點,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設(shè)銷售單價增加元,每天售出件.

1)請寫出之間的函數(shù)表達(dá)式;

2)當(dāng)為多少時,超市每天銷售這種玩具可獲利潤2250元?

3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時最大,最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案