【題目】如圖,在平面直角坐標(biāo)系中,邊長為1的正方形OA1B1C1的兩邊在坐標(biāo)軸上,以它的對角線OB1為邊作正方形OB1B2C2,再以正方形OB1B2C2的對角線OB2為邊作正方形OB2B3C3,以此類推…、則正方形OB2016B2017C2017的頂點B2017的坐標(biāo)是      

A. (21008,0) B. (21008 ,21008) C. (0, 21008) D. (21007, 21007)

【答案】B

【解析】觀察,發(fā)現(xiàn):B1(1,1),B2(0,2),B3(2,2),B4(4,0),B5(4,4),B6(0,8),B7(8,8),B8(16,0),B9(16,16),…,

∴B8n+1(24n,24n)(n為自然數(shù)).

∵2017=8×252+1,

∴點B2017的坐標(biāo)為(21008,21008).

故答案為:(21008,21008).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某教師為了對學(xué)生零花錢的使用進(jìn)行教育指導(dǎo),對全班50名學(xué)生每人一周內(nèi)的零花錢數(shù)額進(jìn)行了調(diào)查統(tǒng)計。并繪制了統(tǒng)計表.

零花錢數(shù)額(元)

5

1

15

20

學(xué)生人數(shù)(人)

a

15

20

5

請根據(jù)圖表中的信息回答以下問題.
(1)求a的值;
(2)求這50名學(xué)生每人一周內(nèi)的零花錢數(shù)額的眾數(shù)和平均數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a+b=3,ab=2,則(a﹣b)2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】k是常數(shù),關(guān)于x的一元二次方程xx+1)=kk+1)的解是(  )

A.xkB.x=±k

C.xkx=﹣k1D.xkx=﹣k+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,D、E、F分別為AB、AC、BC的中點, 若△DEF的周長為6,則△ABC周長為( ).

A. 3 B. 6 C. 12 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條直線上依次有A、B、C三個港口,A、B兩港相距30千米,B、C兩港相距90千米.甲、乙兩船同時分別從A、B港口出發(fā),沿直線勻速駛向C港,最終達(dá)到C港.甲0.5小時到達(dá)B港,此時兩船相距15千米.

求:(1)甲船何時追上乙,此時乙離C港多遠(yuǎn)?

(2)何時甲乙兩船相距10千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD中,兩條對角線AC,BD相交于點O,∠MON+∠BCD=180°,∠MON繞點O旋轉(zhuǎn),射線OM交邊BC于點E,射線ON交邊DC于點F,連接EF.

(1)如圖1,當(dāng)∠ABC=90°時,△OEF的形狀是  ;

(2)如圖2,當(dāng)∠ABC=60°時,請判斷△OEF的形狀,并說明理由;

(3)在(1)的條件下,將∠MON的頂點移到AO的中點O′處,∠MO′N繞點O′旋轉(zhuǎn),仍滿足∠MO′N+∠BCD=180°,射線O′M交直線BC于點E,射線O′N交直線CD于點F,當(dāng)BC=4,且=時,直接寫出線段CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一個木制正方體的表面涂上顏色,然后將正方體的棱分成相等的四份,并做上標(biāo)記,得到許多小正方體.問

1)有  個小正方體;

2)有  個小正方體只有兩面涂有顏色

3)有  個小正方體只有3面都涂了顏色.

4)有  個小正方體6面都未涂色.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圖中,正方形AOBD的邊AO,BO在坐標(biāo)軸上,若它的面積為16,點M從O點以每秒1個單位長度的速度沿x軸正方向運動,當(dāng)M到達(dá)B點時,運動停止.連接AM,過M作AM⊥MF,且滿足AM=MF,連接AF交BD于E點,過F作FN⊥x軸于N,連接ME.設(shè)點M運動時間為t(s).

(1)直接寫出點D和M的坐標(biāo)(可用含t式子表示);
(2)當(dāng)△MNF面積為 時,求t的值;
(3)△AME能否為等腰三角形?若不能請說明理由;若能,求出t的值.

查看答案和解析>>

同步練習(xí)冊答案