精英家教網 > 初中數學 > 題目詳情
如圖,P為正方形ABCD邊BC上任一點,BG⊥AP于點G,在AP的延長線上取點E,使AG=GE,連接BE,CE.
(1)求證:BE=BC;
(2)∠CBE的平分線交AE于N點,連接DN,求證:BN+DN=
2
AN

(3)若正方形的邊長為2,當P點為BC的中點時,請直接寫出CE的長為
 

精英家教網
分析:(1)BG垂直平分線段AE,根據線段垂直平分線上的點到兩端點的距離相等,AB=BE,又AB=BC,所以BE=BC;
(2)標準答案上僅用等腰三角形和直角三角形通過∠GBP+∠PBN=∠GBN=∠PNB=∠NBE+∠NEB,得出Rt△BPG是等腰直角三角形,進而得到,AM=GN;
(3)先求出BG的長度,根據P為BC的中點,CN=BG,再根據△CNE為等腰直角三角形即可求出CE的長度.
解答:(1)證明:∵BG⊥AP,AG=GE,
∴BG垂直平分線段AE,
∴AB=BE,
在正方形ABCD中,AB=BC,
∴BE=BC;

(2)證明:連接CN,延長BN交CE于H.
自點D作DM⊥AN于M,
精英家教網
顯然Rt△ADM≌Rt△ABG,DM=AG,
∵BN平分∠CBE,∴CH=HE,
∵∠CBN=∠EBN,BE=BC,BN=BN,
∴△BCN≌△BEN,
∴CN=NE,△CEN是等腰三角形,
延長AE交DC延長線于F,則有:∠BAG=∠BEG=∠CFE=∠BCN,
A,B,C,D,N五點共圓,∠AND=∠BNG=45°[AB弦所對圓周角=45°]
Rt△DMN,Rt△BGN都是等腰直角三角形,
2
DM=
2
AG=DN,
2
GN=BN,
2
AG+
2
GN=
2
AN=BN+DN;

(3)根據勾股定理,AP=
AB2+BP2
=
22+12
=
5

∴BG=
2×1
5
=
2
5
5
,
∵BP=PC,∠BGP=∠CNP=90°,
∴△BPG≌△CNP(AAS),
∴CN=BG,
∴CE=
2
CN=
2
×
2
5
5
=
2
10
5
點評:本題綜合性較強,主要利用線段垂直平分線段判定和性質,等腰直角三角形的性質,全等三角形的判定和性質,勾股定理,綜合運用各定理和性質,并分析題目用已知條件和所要證明的結論之間的關系是解本題的關鍵,準確作出輔助線對解決本題非常重要,需要同學們在平時的學習中不斷提高自我并完善各知識點之間的聯(lián)系,本題難度較大.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

17、如圖,E為正方形ABCD的邊AB上一點(不含A、B點),F為BC邊的延長線上一點,△DAE旋轉后能與△DCF重合.
(1)旋轉中心是哪一點?
(2)旋轉了多少度?
(3)如果連接EF,那么△DEF是怎樣的三角形?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,P為正方形ABCD的對稱中心,A(0,3),B(1,0),直線OP交AB于N,DC于M,點H從原點O出發(fā)沿x軸的正半軸方向以1個單位每秒速度運動,同時,點R從O出發(fā)沿精英家教網OM方向以
2
個單位每秒速度運動,運動時間為t.求:
(1)C的坐標為
 

(2)當t為何值時,△ANO與△DMR相似?
(3)△HCR面積S與t的函數關系式;并求以A、B、C、R為頂點的四邊形是梯形時t的值及S的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,G為正方形ABCD的對稱中心,A(0,2),B(1,0),直線OG交AB于E,DC于F,點Q從A出發(fā)沿A→B→C的方向以
5
個單位每秒速度運動,同時,點P從O出發(fā)沿OF方精英家教網向以
2
個單位每秒速度運動,Q點到達終點,點P停止運動,運動時間為t.求:
(1)求G點的坐標.
(2)當t為何值時,△AEO與△DFP相似?
(3)求△QCP面積S與t的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,P為正方形ABCD的對稱中心,正方形ABCD的邊長為
10
,tan∠ABO=3,直線OP交AB于N,DC于M,點H從原點O出發(fā)沿x軸的正半軸方向以1個單位每秒速度運動,同時,點R從O出發(fā)沿OM方向以
2
個單位每秒速度運動,運動時間為t,求:
(1)直接寫出A、D、P的坐標;
(2)求△HCR面積S與t的函數關系式;
(3)當t為何值時,△ANO與△DMR相似?
(4)求以A、B、C、R為頂點的四邊形是梯形時t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2009•梅州一模)如圖,O為正方形ABCD對角線AC上一點,以O為圓心,OA長為半徑的⊙0與BC相切于點M,與AB、AD分別相交于點E、F.
(1)求證:CD與⊙0相切;
(2)若⊙0的半徑為
2
,求正方形ABCD的邊長.

查看答案和解析>>

同步練習冊答案