【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(-1,0),對(duì)稱(chēng)軸為直線(xiàn) x=2,系列結(jié)論:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)方程a(x﹣1)2 + b(x﹣1)+c=0的兩根是x1= 0,x2= 6.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】
根據(jù)對(duì)稱(chēng)軸可判斷(1);根據(jù)當(dāng)x=-2時(shí)y<0可判斷(2);由圖象過(guò)點(diǎn)(-1,0)知a-b+c=0,即c=-a+b=-a-4a=-5a,從而得5a+3c=5a-15a=-10a,再結(jié)合開(kāi)口方向可判斷(3);將x-1替換x,由方程ax2+bx+c=0的兩根x1=-1,x2=5,可得結(jié)論可判斷(4).
解:由對(duì)稱(chēng)軸為直線(xiàn)x=2,得到-=2,即b=-4a,
∴4a+b=0,(1)正確;
當(dāng)x=-2時(shí),y=4a-2b+c<0,即4a+c<2b,(2)錯(cuò)誤;
當(dāng)x=-1時(shí),y=a-b+c=0,
∴b=a+c,
∴-4a=a+c,
∴c=-5a,
∴5a+3c=5a-15a=-10a,
∵拋物線(xiàn)的開(kāi)口向下,
∴a<0,
∴-10a>0,
∴5a+3c>0;(3)正確;
由題意得:方程ax2+bx+c=0的兩根為:x1=-1,x2=5,
∴方程a(x-1)2+b(x-1)+c=0的兩根是:x-1=-1或x-1=5,
∴x1=0,x2=6,
故④正確;
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】頂點(diǎn)都在格點(diǎn)上的的三角形叫做格點(diǎn)三角形,如圖,在的方格紙中,是格點(diǎn)三角形.
(1)在圖中,以點(diǎn)為對(duì)稱(chēng)中心,作出一個(gè)與成中心對(duì)稱(chēng)的格點(diǎn)三角形,并在題后橫線(xiàn)上直接寫(xiě)出與的位置關(guān)系: .
(2)在圖中,以所在的直線(xiàn)為對(duì)稱(chēng)軸,作出一個(gè)與成軸對(duì)稱(chēng)的格點(diǎn)三角形,并在題后橫線(xiàn)上直接寫(xiě)出是什么形狀的特殊三角形: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀思考)閱讀下列材料:
已知“x﹣y=2,且x>1,y<0,試確定x+y的取值范圍”有如下解法:
解:∵x﹣y=2,
∴x=y+2
又∵x>1
∴y+2>1
∴y>﹣1
又∵y<0
∴﹣1<y<0 ①
同理1<x <2 ②
由①+②得﹣1+1<x+y<0+2
∴x+y 的取值范圍是0<x+y <2
(啟發(fā)應(yīng)用)請(qǐng)按照上述方法,完成下列問(wèn)題:
已知x ﹣y =3,且x > 2,y <1,則x+y的取值范圍是 ;
(拓展推廣)請(qǐng)按照上述方法,完成下列問(wèn)題:
已知x+y=2,且x>1,y>﹣4,試確定x﹣y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,a、b、c是Rt△ABC和Rt△BED邊長(zhǎng),易知AE=c,這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱(chēng)為“勾系一元二次方程”.
請(qǐng)解決下列問(wèn)題:
寫(xiě)出一個(gè)“勾系一元二次方程”;
求證:關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根,且四邊形ACDE的周長(zhǎng)是,求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC .
(1)求證:PA為⊙O 的切線(xiàn);
(2)若OB=5,OP=,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過(guò)C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線(xiàn);
(2)若DC+DA=6,⊙O的直徑為10,求AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)B(0,3),點(diǎn)C(4,0)
(1)求線(xiàn)段BC的長(zhǎng).
(2)如圖1,點(diǎn)A(﹣1,0),D是線(xiàn)段BC上的一點(diǎn),若△BAD∽△BCA時(shí),求點(diǎn)D的坐標(biāo).
(3)如圖2,以BC為邊在第一象限內(nèi)作等邊△BCE,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)(a<0)圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為﹣3,1,與y軸交于點(diǎn)C,下面四個(gè)結(jié)論:
①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點(diǎn),則y1>y2;③a=﹣c;④若△ABC是等腰三角形,則b=﹣.其中正確的有______(請(qǐng)將結(jié)論正確的序號(hào)全部填上)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com