【題目】如圖,拋物線y=ax2+bx(a≠0)過點(diǎn)E(10,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時(shí),AD=4.
(1)求拋物線的函數(shù)表達(dá)式.
(2)當(dāng)t為何值時(shí),矩形ABCD的周長(zhǎng)有最大值?最大值是多少?
(3)保持t=2時(shí)的矩形ABCD不動(dòng),向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)G,H,且直線GH平分矩形的面積時(shí),求拋物線平移的距離.
【答案】(1)拋物線的函數(shù)表達(dá)式為y=﹣x2+x;(2)當(dāng)t=1時(shí),矩形ABCD的周長(zhǎng)有最大值,最大值為;(3)拋物線向右平移的距離是4個(gè)單位.
【解析】(1)由點(diǎn)E的坐標(biāo)設(shè)拋物線的交點(diǎn)式,再把點(diǎn)D的坐標(biāo)(2,4)代入計(jì)算可得;
(2)由拋物線的對(duì)稱性得BE=OA=t,據(jù)此知AB=10-2t,再由x=t時(shí)AD=-t2+t,根據(jù)矩形的周長(zhǎng)公式列出函數(shù)解析式,配方成頂點(diǎn)式即可得;
(3)由t=2得出點(diǎn)A、B、C、D及對(duì)角線交點(diǎn)P的坐標(biāo),由直線GH平分矩形的面積知直線GH必過點(diǎn)P,根據(jù)AB∥CD知線段OD平移后得到的線段是GH,由線段OD的中點(diǎn)Q平移后的對(duì)應(yīng)點(diǎn)是P知PQ是△OBD中位線,據(jù)此可得.
(1)設(shè)拋物線解析式為y=ax(x-10),
∵當(dāng)t=2時(shí),AD=4,
∴點(diǎn)D的坐標(biāo)為(2,4),
∴將點(diǎn)D坐標(biāo)代入解析式得-16a=4,
解得:a=-,
拋物線的函數(shù)表達(dá)式為y=-x2+x;
(2)由拋物線的對(duì)稱性得BE=OA=t,
∴AB=10-2t,
當(dāng)x=t時(shí),AD=-t2+t,
∴矩形ABCD的周長(zhǎng)=2(AB+AD)
=2[(10-2t)+(-t2+t)]
=-t2+t+20
=-(t-1)2+,
∵-<0,
∴當(dāng)t=1時(shí),矩形ABCD的周長(zhǎng)有最大值,最大值為;
(3)如圖,
當(dāng)t=2時(shí),點(diǎn)A、B、C、D的坐標(biāo)分別為(2,0)、(8,0)、(8,4)、(2,4),
∴矩形ABCD對(duì)角線的交點(diǎn)P的坐標(biāo)為(5,2),
當(dāng)平移后的拋物線過點(diǎn)A時(shí),點(diǎn)H的坐標(biāo)為(4,4),此時(shí)GH不能將矩形面積平分;
當(dāng)平移后的拋物線過點(diǎn)C時(shí),點(diǎn)G的坐標(biāo)為(6,0),此時(shí)GH也不能將矩形面積平分;
∴當(dāng)G、H中有一點(diǎn)落在線段AD或BC上時(shí),直線GH不可能將矩形的面積平分,
當(dāng)點(diǎn)G、H分別落在線段AB、DC上時(shí),直線GH過點(diǎn)P必平分矩形ABCD的面積,
∵AB∥CD,
∴線段OD平移后得到的線段GH,
∴線段OD的中點(diǎn)Q平移后的對(duì)應(yīng)點(diǎn)是P,
在△OBD中,PQ是中位線,
∴PQ=OB=4,
所以拋物線向右平移的距離是4個(gè)單位.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上點(diǎn)A、B、C所表示的數(shù)分別是﹣2、+8、x,AC=6.
(1)畫出數(shù)軸并標(biāo)出點(diǎn)A、B的位置.
(2)確定x的值為 .
(3)若點(diǎn)M,N分別是AB,AC的中點(diǎn),求線段MN的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,AC,BD是對(duì)角線.將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG.則下列結(jié)論:
①四邊形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正確的結(jié)論是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是AC邊上一動(dòng)點(diǎn),過點(diǎn)O作BC的平行線交∠ACB的角平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形CEAF是矩形?請(qǐng)證明你的結(jié)論。
(3)在第(2)問的結(jié)論下,若AE=3,EC=4,AB=12,BC=13,請(qǐng)求出凹四邊形ABCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中.
(1)若把△ABC向上平移2個(gè)單位,再向左平移1個(gè)單位得到△A1B1C1,畫出△A1B1C1,并寫出點(diǎn)A1,B1,C1的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汽車從甲地到乙地用去油箱中汽油的,由乙地到丙地用去剩下汽油的,油箱中還剩6升汽油.(假設(shè)甲地、乙地、丙地、丁地在同一直線上,且按上述順序分布).
(1)求油箱中原有汽油多少升?
(2)若甲、乙兩地相距22千米,則乙、丙兩地相距多遠(yuǎn)?(汽車在行駛過程中行駛的路程與耗油量成正比).
(3)在(2)的條件下,若丁地距丙地10千米,問汽車在不加油的情況下,能否去丁地,然后再沿原路返回到甲地?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳市某學(xué)校抽樣調(diào)查,A類學(xué)生騎共享單車,B類學(xué)生坐公交車、私家車等,C類學(xué)生步行,D類學(xué)生(其它),根據(jù)調(diào)查結(jié)果繪制了不完整的統(tǒng)計(jì)圖.
類型 | 頻數(shù) | 頻率 |
A | 30 | |
B | 18 | 0.15 |
C | 0.40 | |
D |
(1)學(xué)生共________人, ________, ________;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有2000人,騎共享單車的有________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線OA的方向是北偏東20°,射線OB的方向是北偏西40°,OD是OB的反向延長(zhǎng)線,OC是∠AOD的平分線。
(1)求∠DOC的度數(shù);
(2)求出射線OC的方向。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角板ABC的直角頂點(diǎn)C在直線DE上,CF平分∠BCD.
(1)在圖1中,若∠BCE=40°,求∠ACF的度數(shù);
(2)在圖1中,若∠BCE=α,直接寫出∠ACF的度數(shù)(用含α的式子表示);
(3)將圖1中的三角板ABC繞頂點(diǎn)C旋轉(zhuǎn)至圖2的位置,探究:寫出∠ACF與∠BCE的度數(shù)之間的關(guān)系,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com