【題目】如圖所示,直角梯形ABCD 沿直線DC方向平移可得直角梯形HFGE,如果AB=4,BC=9,BI=1.2,HI=3那么陰影面積為_________.
【答案】8.4
【解析】
先根據(jù)圖形平移的性質(zhì)得出FG=BC=9,IF=HF-HI=4-3=1,再根據(jù)直角梯形ABCD沿DC方向平移得到直角梯形HFGE,且BI=1.2得出IC的長(zhǎng),再根據(jù)S陰影=S梯形IFGC即可得出結(jié)論.
解:∵直角梯形HFGE由直角梯形ABCD平移而成,
∴FG=BC=9,
∵直角梯形ABCD沿CD方向平移得到直角梯形EFGH,且BI=1.2,
∴IC=BC-BI=9-1.2=7.8,IF=HF-HI=4-3=1,
∴S陰影=S梯形IFGC=(IC+FG)BF=×(7.8+9)×1=8.4.
故答案為:8.4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AC向點(diǎn)C以1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿邊CB向點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過點(diǎn)P作PD//BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB= , PD= .
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻為菱形,求點(diǎn)Q的速度;
(3)如圖2,在整個(gè)運(yùn)動(dòng)過程中,求出線段PQ中點(diǎn)M所經(jīng)過的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下表: 我們把某格中字母和所得到的多項(xiàng)式稱為特征多項(xiàng)式,例如第1格的“特征多項(xiàng)式”為4x+y,回答下列問題:
序號(hào) | 1 | 2 | 3 | … |
圖形 | x x | x x x | x x x x | … |
(1)第3格的“特征多項(xiàng)式”為 , 第4格的“特征多項(xiàng)式”為 , 第n格的“特征多項(xiàng)式”為;
(2)若第1格的“特征多項(xiàng)式”的值為﹣10,第2格的“特征多項(xiàng)式”的值為﹣16. ①求x,y的值;
②在①的條件下,第n格的“特征多項(xiàng)式”是否有最小值?若有,求出最小值和相應(yīng)的n值;若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖(a)、圖(b)、圖(c)是三張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1.請(qǐng)?jiān)趫D(a)、圖(b)、圖(c)中,分別畫出符合要求(1),(2),(3)的圖形,所畫圖形各頂點(diǎn)必須與方格紙中的小正方形頂點(diǎn)重合.
(1)畫一個(gè)底邊為4,面積為8的等腰三角形;
(2)畫一個(gè)面積為10的等腰直角三角形;
(3)畫一個(gè)面積為12的平行四邊形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知有甲、乙兩個(gè)不透明的袋子,甲袋內(nèi)裝有標(biāo)記數(shù)字﹣1,2,3的三張卡片,乙袋內(nèi)裝有標(biāo)記數(shù)字2,3,4的三張卡片(卡片除數(shù)字不同其余都相同).先從甲袋中隨機(jī)抽取一張卡片,記錄下數(shù)字,再?gòu)囊掖须S機(jī)抽取一張卡片,記錄下數(shù)字.
(1)利用列表或畫樹狀圖的方法(只選其中一種)表示出所抽兩張卡片上數(shù)字之積所有可能的結(jié)果:
(2)求抽出的兩張卡片上的數(shù)字之積是3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+6x+c(a≠0)交y軸于A點(diǎn),交x軸于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知A點(diǎn)坐標(biāo)為(0,﹣5),點(diǎn)B的坐標(biāo)為(1,0).
(1)求此拋物線的解析式及定點(diǎn)坐標(biāo);
(2)過點(diǎn)B作線段AB的垂線交拋物線于點(diǎn)D,如果以點(diǎn)C為圓心的圓與直線BD相切,請(qǐng)判斷拋物線的對(duì)稱軸與⊙C的位置關(guān)系,并說明理由;
(3)在拋物線上是否存在一點(diǎn)P,使△ACP是以AC為直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線相交于點(diǎn)O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的面積為10 ,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD中,AB=AD, 將△ABD沿BD翻折,使點(diǎn)A翻折到點(diǎn)C. E是BD上一點(diǎn),且BE>DE,連結(jié)CE并延長(zhǎng)交AD于F,連結(jié)AE.
(1)依題意補(bǔ)全圖形;
(2)判斷∠DFC與∠BAE的大小關(guān)系并加以證明;
(3)若∠BAD=120°,AB=2,取AD的中點(diǎn)G,連結(jié)EG,求EA+EG的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com