【題目】如圖,拋物線y=x2+bx+c(c>0)與y軸交于點C,頂點為A,拋物線的對稱軸交x軸于點E,交BC于點D,tan∠AOE= .直線OA與拋物線的另一個交點為B.當OC=2AD時,c的值是

【答案】
【解析】解:由tan∠AOE= ,可設A、B點坐標分別為(2m,3m)、(2n,3n),
∵AD∥OC,
∴∠ADB=∠OCB,∠DAB=∠COA,
∴△BAD∽△BOC.
①當點A在第一象限時,如圖1所示.

∵OC=2AD,
∴D點為線段BC的平分線,
∵C(0,c),B(2n,3n),
∴D點橫坐標為 =n,
由題意知A、D點均在拋物線的對稱軸上,
∴n=2m,
∴B點坐標為(4m,6m),
∵A,B在拋物線上,且拋物線對稱軸為x=2m,
∴有 ,
解得 ,或 ,
∵c>0,
∴c= ;
②當點A在第四象限時,如圖2所示.

∵OC=2AD,
∴B點為線段CD的三等分點,
∵C(0,c),B(2n,3n),
∴D點橫坐標為2n× =3n,
由題意知A、D點均在拋物線的對稱軸上,
∴3n=2m,
∴B點坐標為( m,2m),
∵A,B在拋物線上,且拋物線對稱軸為x=2m,
∴有 ,
解得 ,或 ,
∵c>0,
∴c=
所以答案是:
【考點精析】本題主要考查了二次函數(shù)的性質的相關知識點,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段AB上有兩點C、D,且AC=BD,M、N分別是線段AC 、AD的中點,若AB=a cm ,AC=BD=b cm,a,b滿足(a-9)2+|b-7 |=0.

(1)求AB ,AC的長度;

(2)求線段MN的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD為⊙O的直徑,點B在⊙O上,連接BC、BD,過點B的切線AE與CD的延長線交于點A,OE∥BD,交BC于點F,交AE于點E.

(1)求證:△BEF∽△DBC.;
(2)若⊙O的半徑為3,∠C=32°,求BE的長.(精確到0.01)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖是A.B兩所學校藝術節(jié)期間收到的各類藝術作品情況的統(tǒng)計圖:

A學校 B學校

1從圖中你能否看出哪所學校收到的水粉畫作品的數(shù)量多?為什么?

2已知A學校收到的剪紙作品比B學校的多20件,收到的書法作品比B學校的少100件,請問這兩所學校收到藝木作品的總數(shù)分別是多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,A(a,0),C(b,2),且滿足,過CCB⊥x軸于B,

(1)求a,b的值;

(2)在y軸上是否存在點P,使得△ABC和△OCP的面積相等,求出P點坐標;

(3)若過BBD∥ACy軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,

①求:∠CAB+∠ODB的度數(shù);

②求:∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的布袋里裝有3個球,其中2個紅球,1個白球,它們除顏色外其余都相同.
(1)摸出1個球,記下顏色后放回,并攪勻,再摸出1個球,求兩次摸出的球恰好顏色不同的概率(請用“畫樹狀圖”或“列表”等方法寫出分析過程);
(2)現(xiàn)再將n個白球放入布袋,攪勻后,使摸出1個球是白球的概率為 ,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AE、BF、DC是直線,B在直線AC上,E在直線DF上,∠1=∠2,∠A=∠F.

求證:∠C=∠D.

證明:因為∠1=∠2(已知),∠1=∠3( )

得∠2=∠3( )

所以AE//_______( )

得∠4=∠F( )

因為__________(已知)

得∠4=∠A

所以______//_______( )

所以∠C=∠D( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是以O為圓心,AB為直徑的半圓的中點,AB=2,等腰直角三角板45°角的頂點與點P重合,當此三角板繞點P旋轉時,它的斜邊和直角邊所在的直線與直徑AB分別相交于C,D兩點.設線段AD的長為x,線段BC的長為y,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)

(2)

(3)

(4)

(5)

(6)

查看答案和解析>>

同步練習冊答案