【題目】如圖,隧道的截面由拋物線和長方形構成.長方形的長為16m,寬為6m,拋物線的最高點C離路面AA1的距離為8m

1)建立適當?shù)淖鴺讼,求出表示拋物線的函數(shù)表達式;

2)一大型貨車裝載設備后高為7m,寬為4m.如果隧道內(nèi)設雙向行駛車道,那么這輛貨車能否安全通過?

【答案】1)以AA1所在直線為x軸,以線段AA1的中點為坐標原點建立平面直角坐標系, ;(2)貨運卡車能通過.

【解析】

1)根據(jù)拋物線在坐標系中的特殊位置,可以設拋物線的解析式為yax2+8,再把B(﹣8,6)代入,求出a的值即可;

2)隧道內(nèi)設雙行道后,求出縱坐標與7m作比較即可.

解:(1)如圖,以AA1所在直線為x軸,以線段AA1的中點為坐標原點建立平面直角坐標系,

根據(jù)題意得A(﹣80),B(﹣86),C0,8),

設拋物線的解析式為yax2+8,把B(﹣8,6)代入,得:

64a+86,

解得:a=﹣

∴拋物線的解析式為y=﹣x2+8

2)根據(jù)題意,把x±4代入解析式y=﹣x2+8,

y7.5m

7.5m7m,

∴貨運卡車能通過.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,點分別是上的兩個動點(不與點重合),且,延長,使,連接

1)依題意將圖形補全;

2)小華通過觀察、實驗、提出猜想:在點運動過程中,始終有.經(jīng)過與同學們充分討論,形成了幾種證明的想法:

想法一:連接,證明是等腰直角三角形;

想法二:過點的垂線,交的延長線于,可得是等腰直角三角形,證明;

……

請參考以上想法,幫助小華證明(寫出一種方法即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩校各選派10名學生參加美麗泰州鄉(xiāng)土風情知識大賽預賽.各參賽選手的成績?nèi)缦拢?/span>

甲校:93,98,89,93 95,96, 9396,98, 99;

乙校:9394,88,91,92,93,100, 98,98,93

通過整理,得到數(shù)據(jù)分析表如下:

學校

最高分

平均分

中位數(shù)

眾數(shù)

方差

甲校

99

a

95.5

93

8.4

乙校

100

94

b

93

c

1)填空:a = ,b = ;

2)求出表中c的值,你認為哪所學校代表隊成績好?請寫出兩條你認為該隊成績好的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,對角線ACBD相交于點OAC10,BD4,動點P在邊AB上運動,以點O為圓心,OP為半徑作O,CQO于點Q,則在點P運動過程中,CQ的長的最大值為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C、D為圓上的兩點,OCBD,弦ADBC,OC分別交于E、F

1)求證:;

2)若CE1,EB3,求⊙O的半徑;

3)若BD6,AB10,求D E的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象分別與矩形的邊,相交于點,與對角線交于點,以下結論:

①若的面積和為2,則

②若點坐標為,,則

③圖中一定有;

④若點的中點,且,則四邊形的面積為18

其中一定正確個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小元設計的過直線外一點作已知直線的平行線的尺規(guī)作圖過程.

已知:如圖,直線l和直線外一點P

求作:過點P作直線l的平行線.

作法:如圖,

①在直線l上任取點O

②作直線;

③以點O為圓心長為半徑畫圓,交直線于點A,交直線l于點B;

④連接,以點B為圓心,長為半徑畫弧,交于點C(點AC不重合);

⑤作直線

則直線即為所求.

根據(jù)小元設計的尺規(guī)作圖過程,完成以下任務.

1)補全圖形;

2)完成下面的證明:

證明:連接

________________

又∵,

________________

,

___________________________)(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點AB,C的坐標分別是(04),(40),(8,0),⊙M是△ABC的外接圓,則點M的坐標為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,矩形ABCD的對角線長為a,對角線與一邊的夾角為αα≤45°),則CD   (用α的三角函數(shù)和a來表示),SBCD   (用α的三角函數(shù)和a來表示)=   (用的三角函數(shù)和a來表示);

2)猜想并直接寫出sin2αsinα,cosα之間的數(shù)量關系.

查看答案和解析>>

同步練習冊答案