精英家教網 > 初中數學 > 題目詳情

【題目】綜合與探究
如圖,在平面直角坐標系中,已知拋物線y=ax2+bx﹣8與x軸交于A,B兩點,與y軸交于點C,直線l經過坐標原點O,與拋物線的一個交點為D,與拋物線的對稱軸交于點E,連接CE,已知點A,D的坐標分別為(﹣2,0),(6,﹣8).

(1)求拋物線的函數表達式,并分別求出點B和點E的坐標;
(2)試探究拋物線上是否存在點F,使△FOE≌△FCE?若存在,請直接寫出點F的坐標;若不存在,請說明理由;
(3)若點P是y軸負半軸上的一個動點,設其坐標為(0,m),直線PB與直線l交于點Q,試探究:當m為何值時,△OPQ是等腰三角形.

【答案】
(1)解:∵拋物線y=ax2+bx﹣8經過點A(﹣2,0),D(6,﹣8),

,解得 ,

∴拋物線解析式為y= x2﹣3x﹣8,

∵y= x2﹣3x﹣8= (x﹣3)2 ,

∴拋物線對稱軸為直線x=3,

又∵拋物線與x軸交于點A、B兩點,點A坐標(﹣2,0),

∴點B坐標(8,0).

設直線l的解析式為y=kx,

∵經過點D(6,﹣8),

∴6k=﹣8,

∴k=﹣ ,

∴直線l的解析式為y=﹣ x,

∵點E為直線l與拋物線的交點,

∴點E的橫坐標為3,縱坐標為﹣ ×3=﹣4,

∴點E坐標(3,﹣4)


(2)解:拋物線上存在點F使得△FOE≌△FCE,

此時點F縱坐標為﹣4,

x2﹣3x﹣8=﹣4,

∴x2﹣6x﹣8=0,

x=3 ,

∴點F坐標(3+ ,﹣4)或(3﹣ ,﹣4)


(3)解:①如圖1

中,當OP=OQ時,△OPQ是等腰三角形.

∵點E坐標(3,﹣4),

∴OE= =5,過點E作直線ME∥PB,交y軸于點M,交x軸于點H.則 = ,

∴OM=OE=5,

∴點M坐標(0,﹣5).

設直線ME的解析式為y=k1x﹣5,

∴3k1﹣5=﹣4,

∴k1= ,

∴直線ME解析式為y= x﹣5,

令y=0,得 x﹣5=0,解得x=15,

∴點H坐標(15,0),

∵MH∥PB,

= ,即 = ,

∴m=﹣ ,

②如圖2

中,當QO=QP時,△POQ是等腰三角形.

∵當x=0時,y= x2﹣3x﹣8=﹣8,

∴點C坐標(0,﹣8),

∴CE= =5,

∴OE=CE,

∴∠1=∠2,

∵QO=QP,

∴∠1=∠3,

∴∠2=∠3,

∴CE∥PB,

設直線CE交x軸于N,解析式為y=k2x﹣8,

∴3k2﹣8=﹣4,

∴k2= ,

∴直線CE解析式為y= x﹣8,

令y=0,得 x﹣8=0,

∴x=6,

∴點N坐標(6,0),

∵CN∥PB,

= ,

=

∴m=﹣

③OP=PQ時,顯然不可能,理由,

∵D(6,﹣8),

∴∠1<∠BOD,

∵∠OQP=∠BOQ+∠ABP,

∴∠PQO>∠1,

∴OP≠PQ,

綜上所述,當m=﹣ 或﹣ 時,△OPQ是等腰三角形


【解析】(1)根據待定系數法求出拋物線解析式即可求出點B坐標,求出直線OD解析式即可解決點E坐標.(2)拋物線上存在點F使得△FOE≌△FCE,此時點F縱坐標為﹣4,令y=﹣4即可解決問題.(3))①如圖1中,當OP=OQ時,△OPQ是等腰三角形,過點E作直線ME∥PB,交y軸于點M,交x軸于點H,求出點M、H的坐標即可解決問題.②如圖2中,當QO=QP時,△POQ是等腰三角形,先證明CE∥PQ,根據平行線的性質列出方程即可解決問題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AB,CD是⊙O的兩條互相垂直的直徑,點O1 , O2 , O3 , O4分別是OA、OB、OC、OD的中點,若⊙O的半徑為2,則陰影部分的面積為(
A.8
B.4
C.4π+4
D.4π﹣4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一家商店要進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元;若先請甲組單獨做6天,再請乙組單獨做12天可完成,需付兩組費用共3480元,問:

(1)甲、乙兩組工作一天,商店應各付多少元?

(2)已知甲組單獨做需12天完成,乙組單獨做需24天完成,單獨請哪組,商店所付費用最少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知在數軸上有A、 B兩點,點A表示的數是-6,點B表示的數是9.點P在數軸上從點A出發(fā),以每秒2個單位的速度沿數軸正方向運動,同時,點Q在數軸上從點B出發(fā),以每秒3個單位的速度沿數軸負方向運動,當點Q到達點A時,兩點同時停止運動,設運動時間為t秒.

(1) AB=____ ;當t=1時,點Q表示的數是___ ;當t=___時,P、Q兩點相遇;

(2)如圖2,若點M為線段AP的中點,點N為線段BP中點,點P在運動過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由.若不變,請求出線段MN的長;

(3)如圖3,若點M為線段的AP中點,點T為線段BQ中點,則點M表示的數為______;點T表示的數為______MT=______ (用含t的代數式填空)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC 中,點 D,E 分別在邊 AC,AB 上,BD CE 交于點 O,給出下列三個條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.

(1)上述三個條件中,由哪兩個條件可以判定△ABC 是等腰三角形?(用序號寫出所有成立的情形)

(2)請選擇(1)中的一種情形,寫出證明過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某班在一次班會課上,就遇見路人摔倒后如何處理的主題進行討論,并對全班 50 名學生的處理方式進行統(tǒng)計,得出相關統(tǒng)計表和統(tǒng)計圖.

組別

A

B

C

D

處理方式

迅速離開

馬上救助

視情況而定

只看熱鬧

人數

m

30

n

5

請根據表圖所提供的信息回答下列問題:

(1)統(tǒng)計表中的 m= ,n= ;

(2)補全頻數分布直方圖;

(3)若該校有 2000 名學生,請據此估計該校學生采取馬上救助方式的學生有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB2,BF8,BCAE6,CECF7,則△CDF與四邊形ABDE的面積比值是( )

A. 11 B. 21 C. 12 D. 23

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,反比例函數y=的圖象經過點(﹣1,-2),點A是該圖象第一象限分支上的動點,連結AO并延長交另一分支于點B,以AB為斜邊作等腰直角三角形ABC,頂點C在第四象限,AC與x軸交于點D,當=時,則點C的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,現(xiàn)有以下三個條件:①ABCD,②∠B=∠C,③∠E=∠F.請你以其中兩個作為題設,另一個作為結論構造命題.(1)你構造的是哪幾個命題?(2)你構造的命題是真命題還是假命題?若是真命題,請給予證明;若是假命題,請舉出反例.

查看答案和解析>>

同步練習冊答案