【題目】如圖在平面直角坐標(biāo)系xOy中,△ABC的三個頂點坐標(biāo)分別為A(﹣2,4),B(﹣2,1),C(﹣5,2).

(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1
(2)將△A1B1C1的三個頂點的橫坐標(biāo)與縱坐同時乘以﹣2,得到對應(yīng)的點A2 , B2 , C2 , 請畫出△A2B2C2
(3)則SA1B1C1:SA2B2C2

【答案】
(1)

解:如圖所示:△A1B1C1,即為所求;


(2)

解:如圖所示:△A2B2C2,即為所求;


(3)

解:∵△A1B1C1的三個頂點的橫坐標(biāo)與縱坐同時乘以﹣2,得到對應(yīng)的點A2,B2,C2,

∴△A1B1C1與△A2B2C2,關(guān)于原點位似,位似比為1:2,

∴SA1B1C1:SA2B2C2=1:4


【解析】(1)利用關(guān)于x軸對稱點的性質(zhì)得出對應(yīng)點坐標(biāo)進而得出答案;(2)利用對應(yīng)點橫坐標(biāo)與縱坐同時乘以﹣2,進而得出各點的位置;(3)利用位似圖形的性質(zhì)得出面積比即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結(jié)論: ①四邊形CFHE是菱形;②線段BF的取值范圍為3≤BF≤4;
③EC平分∠DCH;④當(dāng)點H與點A重合時,EF=2
以上結(jié)論中,你認為正確的有 . (填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,10個邊長為1的正方形如圖擺放在平面直角坐標(biāo)系中,經(jīng)過原點的一條直線l將這10個正方形分成面積相等的兩部分,則該直線l的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在BC,CD上,△AEF是等邊三角形,連接AC交EF于點G,下列結(jié)論:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤SCEF=2SABE , 其中結(jié)論正確的個數(shù)為( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展以感恩教育為主題的藝術(shù)活動,舉辦了四個項目的比賽,它們分別是演講、唱歌、書法、繪畫.要求每位同學(xué)必須參加,且限報一項活動.以九年級(1)班為樣本進行統(tǒng)計,并將統(tǒng)計結(jié)果繪成如圖1、圖2所示的兩幅統(tǒng)計圖.請你結(jié)合圖示所給出的信息解答下列問題.
(1)求出參加繪畫比賽的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比?
(2)求出扇形統(tǒng)計圖中參加書法比賽的學(xué)生所在扇形圓心角的度數(shù)?
(3)若該校九年級學(xué)生有600人,請你估計這次藝術(shù)活動中,參加演講和唱歌的學(xué)生各有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,∠BAC=60°,點E為直線AC上一點,D為直線BC上的一點,且DA=DE. 當(dāng)點D在線段BC上時,如圖①,易證:BD+AB=AE;
當(dāng)點D在線段CB的延長線上時,如圖②、圖③,猜想線段BD,AB和AE之間又有怎樣的數(shù)量關(guān)系?寫出你的猜想,并選擇一種情況給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax2+1與y= (a≠0)在同一平面直角坐標(biāo)系中的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(π﹣3.14)0+(﹣1)2015+|1﹣ |﹣3tan30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BC于點D,BC=10cm,AD=8cm.點P從點B出發(fā),在線段BC上以每秒3cm的速度向點C勻速運動,與此同時,垂直于AD的直線m從底邊BC出發(fā),以每秒2cm的速度沿DA方向勻速平移,分別交AB、AC、AD于E、F、H,當(dāng)點P到達點C時,點P與直線m同時停止運動,設(shè)運動時間為t秒(t>0).

(1)當(dāng)t=2時,連接DE、DF,求證:四邊形AEDF為菱形;
(2)在整個運動過程中,所形成的△PEF的面積存在最大值,當(dāng)△PEF的面積最大時,求線段BP的長;
(3)是否存在某一時刻t,使△PEF為直角三角形?若存在,請求出此時刻t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案