【題目】綜合與實(shí)踐
問題情境:如圖1,在數(shù)學(xué)活動(dòng)課上,老師讓同學(xué)們畫了等腰Rt△ABC和等腰Rt△ADE,并連接CE,BD.
操作發(fā)現(xiàn):(1)當(dāng)?shù)妊?/span>Rt△ADE繞點(diǎn)A旋轉(zhuǎn),如圖2,勤奮小組發(fā)現(xiàn)了:
①線段CE與線段BD之間的數(shù)量關(guān)系是 .
②直線CE與直線BD之間的位置關(guān)系是 .
類比思考:(2)智慧小組在此基礎(chǔ)上進(jìn)行了深入思考,如圖3,若△ABC與△ADE都為直角三角形,∠BAC=∠DAE=90°,且AC=2AB,AE=2AD,請(qǐng)你寫出CE與BD的數(shù)量關(guān)系和位置關(guān)系,并加以證明.
拓展應(yīng)用:(3)創(chuàng)新小組在(2)的基礎(chǔ)上,又作了進(jìn)一步拓展研究,當(dāng)點(diǎn)E在直線AB上方時(shí),若DE∥AB,且AB=,AD=1,其他條件不變,試求出線段CE的長(zhǎng).(直接寫出結(jié)論)
【答案】(1)EC=BD; BD⊥EC;(2) CE=2BD,CE⊥BD.理由見解析;(3)4.
【解析】
(1)如圖2中,延長(zhǎng)BD交AC于點(diǎn)O,交EC于H.證明△EAC≌△DAB(SAS),即可解決問題.
(2)結(jié)論:CE=2BD,CE⊥BD.如圖3中,延長(zhǎng)BD交AC于點(diǎn)O,交EC于點(diǎn)H.證明△ABD∽△ACE,即可解決問題.
(3)如圖4中,當(dāng)DE∥AB時(shí),設(shè)DE交AC于H,易證AC⊥DE.求出EH,CH,理由勾股定理即可解決問題.
(1)如圖2中,延長(zhǎng)BD交AC于點(diǎn)O,交EC于H.
∵AE=AD,AC=AB,∠EAD=∠CAB=90°,
∴∠EAC=∠DAB,
∴△EAC≌△DAB(SAS),
∴EC=BD,∠ECA=∠ABD,
∵∠ABD+∠AOB=90°,∠AOB=∠COH,
∴∠ECA+∠COH=90°,
∴∠CHO=90°,
∴BD⊥EC,
故答案為EC=BD,BD⊥EC.
(2)結(jié)論:CE=2BD,CE⊥BD.
理由:如圖3中,延長(zhǎng)BD交AC于點(diǎn)O,交EC于點(diǎn)H.
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵AC=2AB,AE=2AD,
∴,
∴△ABD∽△ACE,
∴,
∴CE=2BD,∠ABD=∠ACE,
∵∠ABD+∠AOB=90°,∠AOB=∠COH,
∴∠ECA+∠COH=90°,
∴∠CHO=90°,
∴BD⊥EC.
(3)如圖4中,當(dāng)DE∥AB時(shí),設(shè)DE交AC于H,易證AC⊥DE.
∵AE=2AD,AD=1,
∴AE=2,DE=,,,
∵AC=2AB,AB=,
∴CH=AC﹣AH=,
在Rt△ECH中,EC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)【問題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為
(2)【拓展研究】
在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請(qǐng)僅就圖2的情形給出證明;
(3)【問題發(fā)現(xiàn)】
當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年中國(guó)北京世界園藝博覽會(huì)(以下簡(jiǎn)稱“世園會(huì)”)于4月29日至10月7日在北京延慶區(qū)舉行.世園會(huì)為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:.“解密世園會(huì)”、.“愛我家,愛園藝”、.“園藝小清新之旅”和.“快速車覽之旅”.李欣和張帆都計(jì)劃暑假去世園會(huì),他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.
(1)李欣選擇線路.“園藝小清新之旅”的概率是多少?
(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,P是BA延長(zhǎng)線上一點(diǎn),過點(diǎn)P作⊙O的切線,切點(diǎn)為D,連接BD,過點(diǎn)B作射線PD的垂線,垂足為C.
(1)求證:BD平分∠ABC;
(2)如果AB=6,sin∠CBD,求PD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,F是AD的中點(diǎn),E是CD上一點(diǎn),∠FBE=45°,則tan∠FEB的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接國(guó)慶節(jié),某工廠生產(chǎn)一種火爆的紀(jì)念商品,每件商品成本25元,工廠將該商品進(jìn)行網(wǎng)絡(luò)批發(fā),批發(fā)單價(jià)(元)與一次性批發(fā)量(件)(為正整數(shù))之間滿足如圖所示的函數(shù)關(guān)系.
(1)求與的函數(shù)解析式(也稱關(guān)系式).
(2)若一次性批發(fā)量超過20且不超過50件時(shí),求獲得的利潤(rùn)與的函數(shù)關(guān)系式,同時(shí)求當(dāng)批發(fā)量為多少件時(shí),工廠獲利最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中, 點(diǎn)是的中點(diǎn),點(diǎn)在上,且若在此矩形上存在一點(diǎn),使得是等腰三角形,則點(diǎn)的個(gè)數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地之間有一條筆直的公路,快車和慢車分別從甲、乙兩地同時(shí)出發(fā),沿這條公路勻速相向而行,快車到達(dá)乙地后停止行駛,慢車到達(dá)甲地后停止行駛,已知快車速度為.下圖為兩車之間的距離與慢車行駛時(shí)間的部分函數(shù)圖像.
(1)甲、乙兩地之間的距離是______km;
(2)點(diǎn)的坐標(biāo)為(4,____),解釋點(diǎn)的實(shí)際意義.
(3)根據(jù)題意,補(bǔ)全函數(shù)圖像(標(biāo)明必要的數(shù)據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是一種簡(jiǎn)易臺(tái)燈,在其結(jié)構(gòu)圖(2)中燈座為△ABC(BC伸出部分不計(jì)),A、C、D在同一直線上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,燈桿CD長(zhǎng)為40cm,燈管DE長(zhǎng)為15cm.(參考數(shù)據(jù):sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)
(1)求DE與水平桌面(AB所在直線)所成的角;
(2)求臺(tái)燈的高(點(diǎn)E到桌面的距離,結(jié)果精確到0.1cm).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com