【題目】數(shù)學(xué)課外興趣小組的同學(xué)們要測(cè)量被池塘相隔的兩棵樹(shù)A.B的距離,他們?cè)O(shè)計(jì)了如圖所示的測(cè)量方案:從樹(shù)A沿著垂直于AB的方向走到E , 再?gòu)?/span>E沿著垂直于AE的方向走到F , C為AE上一點(diǎn),其中3位同學(xué)分別測(cè)得三組數(shù)據(jù):①AC , ∠ACB;②EF.DE.AD;③CD , ∠ACB , ∠ADB.其中能根據(jù)所測(cè)數(shù)據(jù)求得A.B兩樹(shù)距離的有( 。
A.0組
B.一組
C.二組
D.三組
【答案】D
【解析】此題比較綜合,要多方面考慮,
第①組中,因?yàn)橹馈?/span>ACB和AC的長(zhǎng),所以可利用∠ACB的正切來(lái)求AB的長(zhǎng);
第②組中可利用∠ACB和∠ADB的正切求出AB;
第③組中設(shè)AC=x , AD=CD+x , AB= ,AB= ;
因?yàn)橐阎?/span>CD , ∠ACB , ∠ADB , 可求出x , 然后得出AB.
故選D.
根據(jù)三角形相似可知,要求出AB , 只需求出EF即可 . 所以借助于(1)(3),根據(jù)AB= 即可解答 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠A=∠B=50°,P 為 AB 中點(diǎn),點(diǎn) M 為射線(xiàn) AC 上(不與點(diǎn) A 重合)的任意一點(diǎn),連接 MP, 并使MP 的延長(zhǎng)線(xiàn)交射線(xiàn)BD 于點(diǎn)N,設(shè)∠BPN=α.
(1)求證:△APM≌△BPN;
(2)當(dāng) MN=2BN 時(shí),求α的度數(shù);
(3)若△BPN 為銳角三角形時(shí),直接寫(xiě)出α的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的三邊AB、BC、CA長(zhǎng)分別是20、30、40,其三條角平分線(xiàn)將△ABC分為三個(gè)三角形,則S△ABO︰S△BCO︰S△CAO等于( )
A. 1︰1︰1
B. 1︰2︰3
C. 2︰3︰4
D. 3︰4︰5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點(diǎn),連接DE并延長(zhǎng)交CB的延長(zhǎng)線(xiàn)于點(diǎn)F,點(diǎn)G在邊BC上,且∠GDF=∠ADF.
(1)求證:△ADE≌△BFE;
(2)連接EG,判斷EG與DF的位置關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB , 垂足為D , AB=c , ∠a=α , 則CD長(zhǎng)為( 。
A.csin2α
B.ccos2α
C.csinαtanα
D.csinαcosα
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某水渠的橫斷面是等腰梯形,已知其斜坡AD和BC的坡度為1:0.6,現(xiàn)測(cè)得放水前的水面寬EF為1.2米,當(dāng)水閘放水后,水渠內(nèi)水面寬GH為2.1米 . 求放水后水面上升的高度是( 。
A.0.55
B.0.8
C.0.6
D.0.75
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀光塔是濰坊市區(qū)的標(biāo)志性建筑,為測(cè)量其高度,如圖,一人先在附近一樓房的底端A點(diǎn)處觀測(cè)觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點(diǎn)處觀測(cè)觀光塔底部D處的俯角是30° . 已知樓房高AB約是45m , 根據(jù)以上觀測(cè)數(shù)據(jù)可求觀光塔的高CD是m .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線(xiàn)MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線(xiàn)MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:DE=AD+BE;
(2)當(dāng)直線(xiàn)MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:DE=AD-BE;
(3)當(dāng)直線(xiàn)MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問(wèn)DE、AD、BE具有怎樣的等量關(guān)系?請(qǐng)直接寫(xiě)出這個(gè)等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=6cm , AC=12cm , 動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以1cm∕秒的速度向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)N從點(diǎn)C出發(fā),以2cm∕秒的速度向點(diǎn)A運(yùn)動(dòng),若兩點(diǎn)同時(shí)運(yùn)動(dòng),是否存在某一時(shí)刻t , 使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與△ABC相似,若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com