(本小題滿分10分)
如圖1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的對(duì)稱中心,MN交AB于F,QM交AD于E.
⑴求證:ME = MF.
⑵如圖2,若將原題中的“正方形”改為“菱形”,其他條件不變,探索線段ME與線段MF的關(guān)系,并加以證明.
⑶如圖3,若將原題中的“正方形”改為“矩形”,且AB = mBC,其他條件不變,探索線段ME與線段MF的關(guān)系,并說(shuō)明理由.
⑷根據(jù)前面的探索和圖4,你能否將本題推廣到一般的平行四邊形情況?若能,寫出推廣命題;若不能,請(qǐng)說(shuō)明理由.
(1)證明:過(guò)點(diǎn)M作MH⊥AB于H,MG⊥AD于G,連接AM
∵M是正方形ABCD的對(duì)稱中心,∴M是正方形ABCD對(duì)角線的交點(diǎn),
∴AM平分∠BAD,∴MH=MG
在正方形ABCD中,∠A=90°,∵∠MHA=∠MGA=90°∴∠HMG=90°,
在正方形QMNP,∠EMF=90°∴∠EMF=∠HMG.∴∠EMH=∠FMG,∵∠MHE=∠MGF,
∴△MHE≌△MGF,∴ME=MF.---------3分
(2) ME=MF。證明:過(guò)點(diǎn)M作MH⊥AB于H,MG⊥AD于G,連接AM,
∵M(jìn)是菱形ABCD的對(duì)稱中心,∴M是菱形ABCD對(duì)角線的交點(diǎn),∴AM平分∠BAD,∴MH=MG,∵BC∥AD,∴∠B+∠BAD=180°,∵∠M=∠B,∴∠M+∠BAD=180°
又∠MHA=∠MGF=90°,在四邊形HMGA中,∠HMG+∠BAD=180°,∴∠EMF=∠HMG.
∴∠EMH=∠FMG,∵∠MHE=∠MGF,∴△MHE≌△MGF,∴ME=MF。----------6分
(3)ME=mMF.證明:過(guò)點(diǎn)M作MH⊥AB于H,MG⊥AD于G,
在矩形ABCD中,∠A=∠B=90°∴∠EMF=∠B=90°,
又∵∠MHA=∠MGA=90°,在四邊形HMGA中,∴∠HMG=90°,
∴∠EMF=∠HMG,∴∠EMH=∠FMG.∵∠MHE=∠MGF,
∴△MHE∽△MGF,∴,
又∵M是矩形ABCD的對(duì)稱中心,∴M是矩形ABCD對(duì)角線的中點(diǎn)
∴MG∥BC,∴MG=BC.同理可得MH=AB,
∵AB = mBC∴ME=mMF。-----------------9分
(4)平行四邊形ABCD和平行四邊形QMNP中,∠M=∠B,AB=mBD,
M是平行四邊形ABCD的對(duì)稱中心,MN交AB于F,AD交QM于E。
則ME=mMF.--------------10分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年河北省中考模擬試卷數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)
如圖,在平面直角坐標(biāo)系中,直線L:y=-2x-8分別與x軸、y軸相交于A、B兩點(diǎn),點(diǎn)P(0,k)是y軸的負(fù)半軸上的一個(gè)動(dòng)點(diǎn),以P為圓心,3為半徑作⊙P。
(1)連結(jié)PA,若PA=PB,試判斷⊙P與X軸的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)K為何值時(shí),以⊙P與直線L的兩個(gè)交點(diǎn)和圓心P為頂點(diǎn)的三角形是正三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年四川省鹽源縣民族中學(xué)中考模擬試題數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)如圖,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.動(dòng)點(diǎn)P從D點(diǎn)出發(fā)沿DC以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)沿CB以每秒2個(gè)單位的速度向B點(diǎn)運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),當(dāng)P點(diǎn)到達(dá)C點(diǎn)時(shí),Q點(diǎn)隨之停止運(yùn)動(dòng).
【小題1】(1)求梯形ABCD的面積;
【小題2】(2)當(dāng)P點(diǎn)離開(kāi)D點(diǎn)幾秒后,PQ//AB;
【小題3】(3)當(dāng)P、Q、C三點(diǎn)構(gòu)成直角三角形時(shí),求點(diǎn)P從點(diǎn)D運(yùn)動(dòng)的時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012年河北省衡水市五校九年級(jí)第三次聯(lián)考數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C、P的坐標(biāo)分別為(0,1)、(-1,0)、(1,0)、(-1,-1)。
【小題1】(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的表達(dá)式;
【小題2】(2)以P為位似中心,將△ABC放大,使得放大后的△A1B1C1
與△OAB對(duì)應(yīng)線段的比為3:1,請(qǐng)?jiān)谟覉D網(wǎng)格中畫出放大
后的△A1B1C1;(所畫△A1B1C1與△ABC在點(diǎn)P同側(cè));
【小題3】(3)經(jīng)過(guò)A1、B1、C1三點(diǎn)的拋物線能否由(1)中的拋物線平
移得到?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012屆河南省商丘市九年級(jí)上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)
在圖1至圖3中,直線MN與線段AB相交
于點(diǎn)O,∠1 = ∠2 = 45°.
【小題1】(1)如圖1,若AO = OB,請(qǐng)寫出AO與BD
的數(shù)量關(guān)系和位置關(guān)系;
【小題2】(2)將圖1中的MN繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到
圖2,其中AO = OB.
求證:AC = BD,AC ⊥ BD;
【小題3】(3)將圖2中的OB拉長(zhǎng)為AO的k倍得到
圖3,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com