【題目】如圖1,拋物線與軸交于點A(4,0),與軸交于點B,在x軸上有一動點E(m,0)(0<m<4),過點E作軸的垂線交直線AB于點N,交拋物線于點P,過點P作PM⊥AB于點M.
(1)求的值和直線AB的函數(shù)表達式;
(2)在P點運動的過程中,請用含m的代數(shù)式表示線段PN;
(3)設(shè)△PMN的周長為,△AEN的周長為,若,求m的值;
(4)如圖2,在(3)條件下,將線段OE繞點O逆時針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<90°),連接、,求的最小值.
【答案】(1);直線AB解析式為y=;(2)PN=m2+3m ;(3)2;(4)
【解析】試題解析:(1)(1)令y=0,求出拋物線與x軸交點,列出方程即可求出a,根據(jù)待定系數(shù)法可以確定直線AB解析式;(2)由△PNM∽△ANE,推出,列出方程即可解決問題;(3)在y軸上 取一點M使得OM′=,構(gòu)造相似三角形,可以證明AM′就是的最小值;
試題分析:
(1)∵拋物線y=ax2+(a+3)x+3(a≠0)與x軸交于點A(4,0),
∴a=﹣. ……………………………………………2分
∵A(4,0),B(0,3),
設(shè)直線AB解析式為y=kx+b,則,
解得,
∴直線AB解析式為y=﹣x+3 ……………………………………………4分
設(shè)點P(m,﹣m2+m+3)
點N在直線AB上則N()
∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m ………………………………6分
(3)如圖1中,
∵PM⊥AB,PE⊥OA,
∴∠PMN=∠AEN,∵∠PNM=∠ANE,
∴△PNM∽△ANE, ……………………………………………8分
∴=,
∵NE∥OB,
∴=,
∴AN=(4﹣m),
∵PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,
∴=,
解得m=2 ……………………………………………10分
(3)如圖2中,在y軸上 取一點M′使得OM′=,連接AM′交PE于E′,
∵OE′=2,OM′OB=×3=4,
∴OE′2=OM′OB,
∴=,∵∠BOE′=∠M′OE′,
∴△M′OE′∽△E′OB,
∴==,
∴M′E′=BE′,
∴AE′+BE′=AE′+E′M′=AM′,此時AE′+BE′最。▋牲c間線段最短,A、M′、E′共線時),
最小值=AM′==。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算正確的是( )
A. a2a2=2a4B. (﹣a2)3=a4
C. 3a2﹣6a2=﹣3a2D. (a﹣3)2=a2﹣9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠C=90°,點D,E分別是邊AC,BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點P在線段AB上,如圖①,且∠α=50°,則∠1+∠2=;
(2)若點P在斜邊AB上運動,如圖②,則∠α、∠1、∠2之間的關(guān)系為;
(3)如圖③,若點P在斜邊BA的延長線上運動(CE<CD),請直接寫出∠α、∠1、∠2之間的關(guān)系:;
(4)若點P運動到△ABC形外(只需研究圖④情形),則∠α、∠1、∠2之間有何關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵居民節(jié)約用電,我市自2012年以來對家庭用電收費實行階梯電價,即每月對每戶居民的用電量分為三個檔級收費,第一檔為用電量在180千瓦時(含180千瓦時)以內(nèi)的部分,執(zhí)行基本價格;第二檔為用電量在180千瓦時到450千瓦時(含450千瓦時)的部分,實行提高電價;第三檔為用電量超出450千瓦時的部分,執(zhí)行市場調(diào)節(jié)價格. 我市一位同學(xué)家今年2月份用電330千瓦時,電費為213元,3月份用電240千瓦時,電費為150元.已知我市的一位居民今年4、5月份的家庭用電量分別為160和 410千瓦時,請你依據(jù)該同學(xué)家的繳費情況,計算這位居民4、5月份的電費分別為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com