【題目】ABC,三邊長滿足b2-a2=c2,則互余的一對角是(  )

A. A與∠B B. B與∠C C. A與∠C D. 以上都不正確

【答案】C

【解析】解:∵△ABC的三邊長滿足b2-a2=c2,b2=a2+c2∴△ABC是直角三角形且∠B=90°,∴∠A+∠C=90°故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下圖中直線L、N分別截過∠A的兩邊,且L∥N.根據(jù)圖中標示的角,判斷下列各角的度數(shù)關系,何者正確?( 。

A.∠2+∠5>180°
B.∠2+∠3<180°
C.∠1+∠6>180°
D.∠3+∠4<180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),拋物線y=ax2+bx+cx軸交于Ax1,0)、Bx2,0)兩點(x1<0<x2),與y軸交于點C(0,-3),若拋物線的對稱軸為直線x=1,且tanOAC=3.

(1)求拋物線的函數(shù)解析式;

(2 若點D是拋物線BC段上的動點,且點D到直線BC距離為,求點D的坐標

(3)如圖(2),若直線y=mx+n經(jīng)過點A,交y軸于點E(0, -),點P是直線AE下方拋物線上一點,過點Px軸的垂線交直線AE于點M,點N在線段AM延長線上,且PM=PN,是否存在點P,使PMN的周長有最大值?若存在,求出點P的坐標及PMN的周長的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡再求值:已知多項式A=3a2﹣6ab+b2 , B=﹣2a2+3ab﹣5b2 , 當a=1,b=﹣1時,試求A+2B的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.
(1)請寫出圖2中陰影部分的面積;
(2)觀察圖2你能寫出下列三個代數(shù)式之間的等量關系嗎?
代數(shù)式:(m+n)2 , (m﹣n)2 , mn;
(3)根據(jù)(2)中的等量關系,解決如下問題:若a+b=7,ab=5,求(a﹣b)2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,OA=8,OC=4,沿對角線OB折疊后,點A與點D重合,OD與BC交于點E,則點D的坐標是(

A.(4,8)
B.(5,8)
C.( ,
D.( ,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)48°39′+67°31′

(2)180°﹣21°17′×5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:善于思考的小軍在解方程組 時,采用了一種“整體代換”的解法:
解:將方程②變形:4x+10y+y=5 即2(2x+5y)+y=5③
把方程①帶入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程組的解為
請你解決以下問題:
(1)模仿小軍的“整體代換”法解方程組
(2)已知x,y滿足方程組
(i)求x2+4y2的值;
(ii)求 + 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次三項式x2+2axa2這樣的完全平方式,可以用公式法將它分解為(xa)2的形式,但是,對于一般二次三項式,就不能直接應用完全平方公式了,我們可以在二次三項式中先加上一項,使其成為完全平方式,再減去這項,使整個式子的值不變,如x2+2ax-3a2x2+2axa2a2-3a2=(xa)2-(2a)2=(x+3a)(xa).像上面這樣把二次三項式分解因式的方法叫做配方法.用上述方法把m2-6m+8分解因式.

查看答案和解析>>

同步練習冊答案