【題目】 學(xué)!鞍僮兡Х健鄙鐖F準(zhǔn)備購買A,B兩種魔方,已知購買2A種魔方和6B種魔方共需130元,購買3A種魔方和4B種魔方所需款數(shù)相同.

(1)求這兩種魔方的單價;

(2)結(jié)合社員們的需求,社團決定購買A,B兩種魔方共100個.某商店有兩種優(yōu)惠活動,如圖所示.請根據(jù)以上信息,購進A種魔方多少個時,兩種活動費用相同?

【答案】1A種魔方的單價為20元/個,B種魔方的單價為15元/個;(2)購進A種魔方45個時,兩種活動費用相同.

【解析】

1)設(shè)A種魔方的單價為x/個,B種魔方的單價為y/個,根據(jù)“購買2A種魔方和6B種魔方共需130元,購買3A種魔方和4B種魔方所需款數(shù)相同”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;

2)設(shè)購進A種魔方m個(0m50),則購進B種魔方(100-m)個,根據(jù)圖片描述列出兩種活動方案需花費的總價格,使得兩種價格相等求得m

解:(1)設(shè)A種魔方的單價為x/個,B種魔方的單價為y/個,

根據(jù)題意,得

解得

答:A種魔方的單價為20/個,B種魔方的單價為15/.

(2)設(shè)購進A種魔方m個,則購進B種魔方(100m)個,

根據(jù)題意,得

0.8×20m0.4×15(100m)20m15(100mm)

解得m45.

答:購進A種魔方45個時,兩種活動費用相同.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O半徑為4cm,其內(nèi)接正六邊形ABCDEF,點P,Q同時分別從A,D兩點出發(fā),以1cm/s速度沿AF,DC向終點F,C運動,連接PB,QE,PE,BQ.設(shè)運動時間為t(s).

(1)求證:四邊形PEQB為平行四邊形;
(2)填空:
①當(dāng)t=s時,四邊形PBQE為菱形;
②當(dāng)t=s時,四邊形PBQE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①兩條直線相交,一個角的兩鄰補角相等,則這兩條直線垂直;②同位角相等;③點(5,6)與點(6,5)表示同一點;④若兩個同旁內(nèi)角互補,則它們的角平分線互相垂直;⑤點(5)在第二象限.其中假命題的個數(shù)為( 

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD,點ECD上,連接AE,BD,點GAE中點,過點GFHAE,FH分別交ADBC于點F,HFHBD交于點K,且HK2FG,若EG,則線段AF的長為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級學(xué)習(xí)小組在探究學(xué)習(xí)過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.

(1)求證:AM=AN;
(2)當(dāng)旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,∠A100°,∠C70°.點M,N分別在AB,BC上,將BMN沿MN翻折,得FMN.若MFAD,FNDC,則∠D_____°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小明設(shè)計用手電來測量某古城墻高度的示意圖,點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)平面鏡反射后剛好射到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,且測得AB=1.2米,BP=1.8米,PD=12米,那么該古城墻的高度是( )

A.6米
B.8米
C.18米
D.24米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,∠B30°,以點A為圓心,任意長為半徑畫弧分別交ABAC于點MN,再分別以M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則SDACSABC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC內(nèi)接于圓O,I是△ABC的內(nèi)心,AI的延長線交圓O于點D.
(1)求證:BD=DI;
(2)若OI⊥AD,求的值.

查看答案和解析>>

同步練習(xí)冊答案