【題目】當x=1時,ax+b+1的值為﹣2,則(a+b﹣1)(1﹣a﹣b)的值為(  )
A.-16
B.-8
C.8
D.16

【答案】A
【解析】∵當x=1時,ax+b+1的值為﹣2,∴a+b+1=﹣2,∴a+b=﹣3,∴(a+b﹣1)(1﹣a﹣b)=(﹣3﹣1)×(1+3)=﹣16.故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標中,正比例函數(shù)的圖象與反比例函數(shù)的圖象經(jīng)過點

)分別求這兩個函數(shù)的表達式.

)將直線向上平移個單位長度后與軸交于點,與反比例函數(shù)圖象在第四象限內的交點為,連接、,求點的坐標及的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從A地將一批物品運往B地,再返回A地,圖6表示兩車離A地的距離s(千米)隨時間t(小時)變化的圖象,已知乙車到達B地后以30千米/小時的速度返回.請根據(jù)圖象中的數(shù)據(jù)回答:

(1)甲車出發(fā)多長時間后被乙車追上?
(2)甲車與乙車在距離A地多遠處迎面相遇?
(3)甲車從B地返回的速度多大時,才能比乙車先回到A地?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△DEC的一個頂點D在△ABC內部,且∠CAD+∠CBD=90°.

(1)如圖1,若△ABC與△DEC均為等腰直角三角形,且∠ABC=∠DEC=90°,連接BE,求證:△ADC∽△BEC.

(2)如圖2,若∠ABC=∠DEC=90°,=n,BD=1,AD=2,CD=3,求n的值;

(3)如圖3,若AB=BC,DE=EC,且∠ABC=∠DEC=135°,BD=a,AD=b,CD=c,請直接寫出a、b、c三者滿足的等量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為一斜坡,其坡角為19.5°,緊挨著斜坡AB底部A處有一高樓,一數(shù)學活動小組量得斜坡長AB=15m,在坡頂B處測得樓頂D處的仰角為45°,其中測量員小剛的身高BC=1.7米,求樓高AD.

(參考數(shù)據(jù):sin19.5°≈,tan19.5°≈ ,最終結果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個角是40°,那么這個角的補角是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個邊長分別為a,b(a>b)的正方形連在一起,三點C,B,F(xiàn)在同一直線上,反比例函數(shù)y=在第一象限的圖象經(jīng)過小正方形右下頂點E.若OB2﹣BE2=10,則k的值是( 。

A. 3 B. 4 C. 5 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)y=ax2+bx+ca≠0),有下列四個結論:①abc04a+2b+c0;3a+c0;a+b≥mam+b),其中正確的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BC=10,∠B=60°,∠C=45°,則點A到BC的距離是( )

A.10﹣5
B.5+5
C.15﹣5
D.15﹣10

查看答案和解析>>

同步練習冊答案