【題目】如圖1,小明用1張邊長為的正方形,2張邊長為的正方形,3張邊長分別為的長方形紙片拼成一個長為,寬為的長方形,它的面積為,于是,我們可以得到等式

請解答下列問題:

1)根據(jù)圖2,寫出一個代數(shù)恒等式;

2)利用(1)中所得的結(jié)論,解決下面的問題:已知,求的值.

3)小明又用4張邊長為的正方形,3張邊長為的正方形,8張邊長分別為的長方形紙片拼出一個長方形,那么該長方形的長為__________,寬為__________;

【答案】1;(230;(3;

【解析】

1)先從整體表達(dá)出正方形的總面積:,各個小的矩形的面積之和為:,總的正方形的面積等于各個小的矩形面積之和,即可得出答案;

2)利用(1)中所得的結(jié)論和已知條件:,進(jìn)行整體運算即可得到結(jié)果;

3)根據(jù)題意可知拼出的長方形的總面積為:,再用因式分解法即可求出答案.

1)根據(jù)總的正方形的面積等于各個小的矩形面積之和可得:

;

2)由(1)可知:

代入上式,

可得:,

;

3)根據(jù)題意可知拼出的長方形的總面積為:

根據(jù)因式分解法可得:

,

故根據(jù)幾何意義可得:

該長方形的長為,寬為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為8,點E為正方形邊上一點,連接BE,且BE=10,則AE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,O為AC中點,點P在AC上,若OP= ,tan∠A= ,∠B=120°,BC=2 ,則AP=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上一點,且AB=14.動點P從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為tt>0秒.

1寫出數(shù)軸上點B表示的數(shù) ,點P表示的數(shù) 用含t的代數(shù)式表示;

2動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時追上點Q?

3若M為AP的中點,N為PB的中點.點P在運動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)同題情境:如圖1,ABCD,∠PAB=130°,∠PCD=120°.求∠APC的度數(shù).

小明想到一種方法,但是沒有解答完:

如圖2,過PPEAB,∴∠APE+∠PAB=180°.

∴∠APE=180°-∠PAB=180°-130°=50°.

ABCD.∴PECD.

…………

請你幫助小明完成剩余的解答.

(2)問題遷移:請你依據(jù)小明的思路,解答下面的問題

如圖3,ADBC,P在射線OM上運動,∠MDP=∠α,∠BCP=∠β.

當(dāng)點PA、B兩點之間時,∠CPD,∠α,∠β之間有何數(shù)量關(guān)系?請說明理由.

②當(dāng)點PA、B兩點外側(cè)時(點P與點O不重合),請直接寫出∠CPD,∠α,∠β之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一股民在上星期五買進(jìn)某公司股票1000股,每股27元,下表為本星期內(nèi)每日該股票的漲跌情況單位:元

星期

每股漲跌

星期三收盤時,每股多少元?

本星期內(nèi)每股最低價多少元?

本周星期幾拋售,獲利最大,最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋中裝有5個黃球,13個黑球和22個紅球,它們除顏色外都相同.

(1)小明和小紅玩摸球游戲,規(guī)定每人摸球后再將摸到的球放回去為一次游戲.若摸到黑球小明獲勝,摸到黃球小紅獲勝,這個游戲?qū)﹄p方公平嗎?請說明你的理由;

(2)現(xiàn)在裁判想從袋中取出若干個黑球,并放入相同數(shù)量的黃球,使得這個游戲?qū)﹄p方公平,問取出了多少黑球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個三位正整數(shù)t,將各數(shù)位上的數(shù)字重新排序后(包括本身),得到一個新的三位數(shù) (a≤c),在所有重新排列的三位數(shù)中,當(dāng)|a+c﹣2b|最小時,稱此時的 為t的“最優(yōu)組合”,并規(guī)定F(t)=|a﹣b|﹣|b﹣c|,例如:124重新排序后為:142、214、因為|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124為124的“最優(yōu)組合”,此時F(124)=﹣1.
(1)三位正整數(shù)t中,有一個數(shù)位上的數(shù)字是另外兩數(shù)位上的數(shù)字的平均數(shù),求證:F(t)=0
(2)一個正整數(shù),由N個數(shù)字組成,若從左向右它的第一位數(shù)能被1整除,它的前兩位數(shù)能被2整除,前三位數(shù)能被3整除,…,一直到前N位數(shù)能被N整除,我們稱這樣的數(shù)為“善雅數(shù)”.例如:123的第一位數(shù)1能披1整除,它的前兩位數(shù)12能被2整除,前三位數(shù)123能被3整除,則123是一個“善雅數(shù)”.若三位“善雅數(shù)”m=200+10x+y(0≤x≤9,0≤y≤9,x、y為整數(shù)),m的各位數(shù)字之和為一個完全平方數(shù),求出所有符合條件的“善雅數(shù)”中F(m)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是我校某班同學(xué)隨機抽取的我國100座城市2017年某天當(dāng)?shù)豴m2.5值的情況的條形統(tǒng)計圖,那么本次調(diào)查中,PM2.5值的中位數(shù)為微克/立方米.

查看答案和解析>>

同步練習(xí)冊答案