如圖,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°且DC=2AB,分別以DA、AB、BC為邊向梯形外作正方形,其面積分別為S1、S2、S3,則S1、S2、S3之間的關(guān)系是( )
A、S1+S3=S2 B、2S1+S3=S2 C、2S3-S2=S1 D、4S1-S3=S2
A
【解析】
試題分析:過點(diǎn)A作AE∥BC交CD于點(diǎn)E,得到平行四邊形ABCE和Rt△ADE,根據(jù)平行四邊形的性質(zhì)和勾股定理,不難證明三個(gè)正方形的邊長對應(yīng)等于所得直角三角形的邊.
如圖,過點(diǎn)A作AE∥BC交CD于點(diǎn)E,
∵AB∥DC,
∴四邊形AECB是平行四邊形,
∴AB=CE,BC=AE,∠BCD=∠AED,
∵∠ADC+∠BCD=90°,DC=2AB,
∴AB=DE,∠ADC+∠AED=90°,
∴∠DAE=90°,
∴,
∵,,,
∴,
故選A.
考點(diǎn):本題考查了勾股定理
點(diǎn)評:解題的關(guān)鍵在于通過作輔助線把梯形的問題轉(zhuǎn)換為平行四邊形和直角三角形的問題,然后把三個(gè)正方形的邊長整理到一個(gè)三角形中進(jìn)行解題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、4
| ||||
C、
| ||||
D、4
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| ||
10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com